分析 设P$(4cosθ,\sqrt{15}sinθ)$(θ∈[0,2π)),C(-1+cosα,sinα),D(-1-cosα,-sinα).可得$\overrightarrow{PC}•\overrightarrow{PD}$=8cosθ+cos2θ+15.同理可得:$\overrightarrow{PE}•\overrightarrow{PF}$=-8cosθ+cos2θ+15.
于是$\overrightarrow{PC}•\overrightarrow{PD}+\overrightarrow{PE}•\overrightarrow{PF}$=2cos2θ+30,即可得出.
解答 解:设P$(4cosθ,\sqrt{15}sinθ)$(θ∈[0,2π)),C(-1+cosα,sinα),D(-1-cosα,-sinα).
∴$\overrightarrow{PC}•\overrightarrow{PD}$=(-1+cosα-4cosθ,sinα-$\sqrt{15}sinθ$)•(-1-cosα-4cosθ,-sinα-$\sqrt{15}sinθ$)
=(1+4cosθ)2-cos2α+15sin2θ-sin2α
=1+8cosθ+cos2θ+15-1
=8cosθ+cos2θ+15
同理可得:$\overrightarrow{PE}•\overrightarrow{PF}$=-8cosθ+cos2θ+15.
∴$\overrightarrow{PC}•\overrightarrow{PD}+\overrightarrow{PE}•\overrightarrow{PF}$=2cos2θ+30≥30.当$θ=\frac{π}{2}$或$\frac{3π}{2}$时取等号.
∴$\overrightarrow{PC}•\overrightarrow{PD}+\overrightarrow{PE}•\overrightarrow{PF}$的最小值为30.
故答案为:30.
点评 本题考查了椭圆与圆的参数方程、向量数量积运算性质、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{7}}{3}$ | B. | -$\frac{\sqrt{7}}{3}$ | C. | ±$\frac{\sqrt{7}}{3}$ | D. | -$\frac{3\sqrt{7}}{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com