精英家教网 > 高中数学 > 题目详情
3.已知椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{15}=1$,圆A的方程为(x+1)2+y2=1,圆B的方程为(x-1)2+y2=1,在椭圆上取一点P,过点A的直线与圆A交于C,D两点过B的直线与圆B交于E,F两点,那么$\overrightarrow{PC}•\overrightarrow{PD}+\overrightarrow{PE}•\overrightarrow{PF}$的最小值为30.

分析 设P$(4cosθ,\sqrt{15}sinθ)$(θ∈[0,2π)),C(-1+cosα,sinα),D(-1-cosα,-sinα).可得$\overrightarrow{PC}•\overrightarrow{PD}$=8cosθ+cos2θ+15.同理可得:$\overrightarrow{PE}•\overrightarrow{PF}$=-8cosθ+cos2θ+15.
于是$\overrightarrow{PC}•\overrightarrow{PD}+\overrightarrow{PE}•\overrightarrow{PF}$=2cos2θ+30,即可得出.

解答 解:设P$(4cosθ,\sqrt{15}sinθ)$(θ∈[0,2π)),C(-1+cosα,sinα),D(-1-cosα,-sinα).
∴$\overrightarrow{PC}•\overrightarrow{PD}$=(-1+cosα-4cosθ,sinα-$\sqrt{15}sinθ$)•(-1-cosα-4cosθ,-sinα-$\sqrt{15}sinθ$)
=(1+4cosθ)2-cos2α+15sin2θ-sin2α
=1+8cosθ+cos2θ+15-1
=8cosθ+cos2θ+15
同理可得:$\overrightarrow{PE}•\overrightarrow{PF}$=-8cosθ+cos2θ+15.
∴$\overrightarrow{PC}•\overrightarrow{PD}+\overrightarrow{PE}•\overrightarrow{PF}$=2cos2θ+30≥30.当$θ=\frac{π}{2}$或$\frac{3π}{2}$时取等号.
∴$\overrightarrow{PC}•\overrightarrow{PD}+\overrightarrow{PE}•\overrightarrow{PF}$的最小值为30.
故答案为:30.

点评 本题考查了椭圆与圆的参数方程、向量数量积运算性质、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.求下列函数的周期:
(1)y=3cosx,x∈R;
(2)y=sin2x,x∈R;
(3)y=2sin($\frac{1}{2}$x-$\frac{π}{6}$),x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\sqrt{3x-{x}^{2}-2}$的定义域为A,函数f(x)=a-2x-x2的值域为B.
(1)若(∁R A)∪B=R,求a的取值范围;
(2)设集合C={x|x2-(a+a2)x+a3<0},若A∩C=C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知方程x2+px+q=0与方程x2+(p-3)x+2q+1=0分别都有两个不等的实根,若他们的解集分别为A,B,且A∪B={1,2,5},求p,q,A,B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x-1)=x2+x-1,求f(0),f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$\overrightarrow{OA}$,$\overrightarrow{OB}$为不共线的向量,则P,A,B三点共线的充要条件为$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$且λ+μ=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x的集合:在什么区间上是增函数?在什么区间上是减函数?
(1)y=$\sqrt{2}$+$\frac{sinx}{π}$,x∈R   (2)y=3-2cosx,x∈R (3)函数y=sin(-3x+$\frac{π}{4}$)  (4)函数y=3cos(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=sin(2x-$\frac{π}{4}$)-2$\sqrt{2}$sin2x的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若α,β均为锐角,且sinα-sinβ=-$\frac{1}{2}$,cosα-cosβ=$\frac{1}{2}$,则tan(α-β)=(  )
A.$\frac{\sqrt{7}}{3}$B.-$\frac{\sqrt{7}}{3}$C.±$\frac{\sqrt{7}}{3}$D.-$\frac{3\sqrt{7}}{7}$

查看答案和解析>>

同步练习册答案