精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆的离心率为,其左焦点到点的距离为.不过原点的直线相交于两点,且线段被直线平分.

1)求椭圆的方程;

2)求的面积取最大值时直线的方程.

【答案】1)椭圆的方程为;(2)直线的方程为.

【解析】试题分析:(1)由题意得到离心率,再结合距离公式即可得: 所求椭圆的方程为: .2)易得直线的方程: ,用点差法得到,设直线的方程为,与椭圆方程联立得,由得到的取值范围;由弦长公式,点到直线的距离表示出面积,即可求出直线的方程.

试题解析:(1)由题:

左焦点到点的距离为: .

可解得: .

所求椭圆的方程为: .

2)易得直线的方程: ,设.其中.

在椭圆上,

.

设直线的方程为

代入椭圆: .

显然.

.

由上又有: .

.

到直线的距离为: .

当且仅当时,三角形的面积最大,此时直线的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,倾斜角为的直线的参数方程为为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

1)写出直线的普通方程和曲线的直角坐标方程;

2)已知点.若点的极坐标为,直线经过点且与曲线相交于两点,设线段的中点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若三棱锥的三条侧棱两两垂直,侧棱长分别为1, ,2,且它的四个顶点在同一球面上,则此球的体积为(
A.
B.
C.
D.8π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=

l)求函数fx)的定义域;

2)求函数fx)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为选拔选手参加中国谜语大会,某中学举行了一次谜语大赛活动,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数得分取正整数,满分为100分作为样本,样本容量为进行统计.按照的分组作出如下频率分布直方图.

1由如下茎叶图图中仅列出了得分在的数据提供的信息,求样本容量和频率分布直方图中的的值;

2在选取的样本中,从竞赛成绩在80分以上含80分的学生中随机抽取2名学生参加中国谜语大会,求所抽取的2名学生中至少有一人得分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若曲线在点处的切线与直线垂直,求函数的极值;

(Ⅱ)设函数.当时,若区间上存在,使得,求实数的取值范围.(为自然对数底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个体户计划经销A、B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A、B商品中所获得的收益分别为f(x)万元与g(x)万元、其中f(x)=a(x﹣1)+2(a>0);g(x)=6ln(x+b),(b>0)已知投资额为零时,收益为零.
(1)试求出a、b的值;
(2)如果该个体户准备投入5万元经营这两种商品,请你帮他制定一个资金投入方案,使他能获得最大收益,并求出其收入的最大值.(精确到0.1,参考数据:ln3≈1.10).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a≥0,f(x)=x﹣1﹣ln2x+2alnx(x>0).
(1)令F(x)=xf′(x),讨论F(x)在(0,+∞)内的单调性并求极值;
(2)求证:当x>1时,恒有x>ln2x﹣2alnx+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,锐角△ABC中, = = ,点M为BC的中点. (Ⅰ)试用 表示
(Ⅱ)若| |=5,| |=3,sin∠BAC= ,求中线AM的长.

查看答案和解析>>

同步练习册答案