【题目】已知全集为R,集合A={x|x2﹣5x+6≥0},集合B={x|﹣3<x+1<3}.求:
(1)A∩B;
(2)A∪B;
(3)(RA)∩B.
【答案】
(1)解:由A中不等式变形得:(x﹣2)(x﹣3)≥0,
解得:x≤2或x≥3,即A=(﹣∞,2]∪[3,+∞),
由B中不等式解得:﹣4<x<2,即B=(﹣4,2);
A∩B=(﹣4,2)
(2)解:A∪B=(﹣∞,2]∪[3,+∞)
(3)解:RA=(2,3),
则(RA)∩B=
【解析】分别求出A与B中不等式的解集确定出A与B,(1)求出两集合的交集即可;(2)求出两集合的并集即可;(3)求出A补集与B的交集即可.
【考点精析】本题主要考查了交、并、补集的混合运算的相关知识点,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如表:
所用的时间(天数) | 10 | 11 | 12 | 13 |
通过公路l的频数 | 20 | 40 | 20 | 20 |
通过公路2的频数 | 10 | 40 | 40 | 10 |
假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发(将频率视为概率).
(I)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;
(Ⅱ)若通过公路l、公路2的“一次性费用”分别为3.2万元、1.6万元(其他费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到;每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,生产商将支付给销售商2万元.如果汽车A,B按(I)中所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若奇函数f(x)在[1,3]上为增函数,且有最小值0,则它在[﹣3,﹣1]上( )
A.是减函数,有最小值0
B.是增函数,有最小值0
C.是减函数,有最大值0
D.是增函数,有最大值0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:(x+2)8=a0+a1(x+1)+a2(x+1)2+…+a8(x+1)8 , 其中ai=(i=0,1,2…8)为实常数,则a1+2a2+…+7a7+8a8= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)对任意x∈R,满足f(x)=f(2﹣x).如果方程f(x)=0恰有2016个实根,则所有这些实根之和为( )
A.0
B.2016
C.4032
D.8064
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的( )
A.必要不充分条件
B.充分不必要条件
C.充分必要条件
D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}、{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于( )
A.0
B.37
C.100
D.﹣37
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com