精英家教网 > 高中数学 > 题目详情
设有甲、乙两门火炮,它们的弹着点与目标之间的距离为随机变量X1和X2(单位:cm),其分布列为:


求EX1,EX2,DX1,DX2,并分析两门火炮的优劣.
根据题意,有EX1=82×0.2+83×0.2+90×0.2+92×0.2+98×0.2=89,
EX2=(82+86.5+90+92.5+94)×0.2=89,
DX1=(82-89)2×0.2+(83-89)2×0.2+(90-89)2×0.2+(92-89)2×0.2+(98-89)2×0.2=35.2,
DX2=(82-89)2×0.2+(86.5-89)2×0.2+(90-89)2×0.2+(92.5-89)2×0.2+(94-89)2×0.2=18.5.
∵EX1=EX2,故两门火炮的平均性能相当,
但DX1>DX2,故乙火炮相对性能较稳定,
则甲火炮相对分布较分散,性能不够稳定.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)把一颗质地均匀,四个面上分别标有复数为虚数单位)的正四面体玩具连续抛掷两次,第一次出现底面朝下的复数记为,第二次出现底面朝下的复数记为
(1)用表示“”这一事件,求事件的概率
(2)设复数的实部为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是一个离散型随机变量,其分布列如下表,求的值


-1
0
1
P

1-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设随机变量ξ~N(μ,σ2),对非负数常数k,则P(|ξ-μ|≤kσ)的值是(  )
A.只与k有关B.只与μ有关
C.只与σ有关D.只与μ和σ有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

从某学校高三年级共800名男生中随机抽取50名作为样本测量身高.据测量,被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160)第二组[160,165);…第八组[190,195].下图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.
(Ⅰ)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;
(Ⅱ)在上述样本中从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x,y,求满足“|x-y|≤5”的事件的概率;
(Ⅲ)在上述样本中从最后三组中任取3名学生参加学校篮球队,用ξ表示从第八组中取到的学生人数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为
5
6
4
5
3
4
1
3
,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第三轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率;
(Ⅲ)该选手在选拔过程中回答过的问题的个数记为X,求随机变量X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某学校的三个学生社团的人数分布如下表(每名学生只能参加一个社团):
围棋社舞蹈社拳击社
男生51028
女生1530m
学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从三个社团成员中抽取18人,结果拳击社被抽出了6人.
(Ⅰ)求拳击社团被抽出的6人中有5人是男生的概率;
(Ⅱ)设拳击社团有X名女生被抽出,求X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

甲乙两人分别独立参加某高校自主招生面试,若甲、乙能通过面试的概率都是,则面试结束后通过的人数X的数学期望是(  )
A.B.C.1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

电视台综艺频道组织的闯关游戏,游戏规定前两关至少过一关才有资格闯第三关,闯关者闯第一关成功得3分,闯第二关成功得3分,闯第三关成功得4分.现有一位参加游戏者单独闯第一关、第二关、第三关成功的概率分别为,记该参加者闯三关所得总分为ξ.
(1)求该参加者有资格闯第三关的概率;
(2)求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案