精英家教网 > 高中数学 > 题目详情
1.一个棱长为2cm的正方体的顶点都在球面上,则球的体积为4$\sqrt{3}$π.

分析 求出正方体的对角线的长度,就是外接球的直径,利用球的体积公式求解即可.

解答 解:因为一个正方体的顶点都在球面上,它的棱长为2,
所以正方体的外接球的直径就是正方体的对角线的长度:2$\sqrt{3}$.
所以球的半径为:$\sqrt{3}$.
所求球的体积为$\frac{4π}{3}×(\sqrt{3})^{3}$=4$\sqrt{3}$π.
故答案为4$\sqrt{3}$π.

点评 本题考查球的内接体,球的体积的求法,求出球的半径是解题的关键,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.
(1)当a=-$\frac{10}{3}$时,讨论函数f(x)的单调性;
(2)若函数f(x)仅在x=0处有极值,求a的取值范围;
(3)若对于任意的a∈[-2,2],不等式f(x)≤1在[-1,0]上恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平行四边形ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{AM}=4\overrightarrow{MC},P$为AD的中点,$\overrightarrow{MP}$=(  )
A.$\frac{4}{5}$$\overrightarrow{a}$+$\frac{3}{10}$$\overrightarrow{b}$B.$\frac{4}{5}$$\overrightarrow{a}$+$\frac{13}{10}$$\overrightarrow{b}$C.-$\frac{4}{5}$$\overrightarrow{a}$-$\frac{3}{10}$$\overrightarrow{b}$D.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2log4(1+x)-log4(1+ax2)在定义域(-1,1)内是奇函数,其中a是常数.
(1)求a的值;
(2)求使不等式f(-x)≤f(x)-1成立的实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知双曲线的一条渐近线方程是y=-$\frac{3}{2}$x,焦距为2$\sqrt{13}$,求此双曲线的标准方程;
(2)求以双曲线$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1的焦点为顶点,顶点为焦点的椭圆标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,奇函数是(  )
A.y=x2B.y=2xC.y=log2xD.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log2$\frac{1}{3}$),b=f(log25),c=f(2m),则a,b,c的大小关系为(  )
A.<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.P是椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1上一点,F1、F2分别是椭圆的左、右焦点,若∠F1PF2=$\frac{π}{3}$,则△F1PF2的面积为(  )
A.$16\sqrt{3}$B.$3\sqrt{3}$C.$9\sqrt{3}$D.$9(2+\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设随机变量ξ~N(3,4),若P(ξ<2a-3)=P(ξ>a+2),则实数a等于(  )
A.$\frac{7}{3}$B.$\frac{5}{3}$C.5D.3

查看答案和解析>>

同步练习册答案