精英家教网 > 高中数学 > 题目详情
设f(x)=-x3+bx2+cx,其导函数y=f'(x)的图象经过点(-2,0),(
23
 , 0)

(Ⅰ)求f(x)的极小值;
(Ⅱ)方程f(x)+p=0有唯一实数解,求p的取值范围;
(Ⅲ)若对x∈[-3,3],都有f(x)≥m2-14m恒成立,求实数m的取值范围.
分析:(1)求出y=f'(x),因为导函数图象经过(-2,0)和(
2
3
 , 0)
,代入即可解出b、c,再根据图象可知函数的单调性,而f(x)极小值为f(-2)=-8.
(2)由(1)的结论,求出f(x)的极值,进而根据方程f(x)+p=0有唯一实数解,则函数f(x)的图象与直线y=-p有且只有一个交点,确定实数P的取值范围
(3)根据函数增减性求出函数在区间[-3,3]的最小值大于等于m2-14m,即可求出m的范围.
解答:解:(1)∵f'(x)=-3x2+2bx+c,且y=f'(x)的图象经过点(-2,0),(
2
3
 , 0)

可知
-12-4b+c=0
-
4
3
+
4
3
b+c=0
解得b=-2,c=4,
当x∈(-∞,-2)∪(
2
3
,+∞)时,f'(x)<0
当x∈(-2,
2
3
)时,f'(x)>0
∴函数y=f(x)在(-∞,-2)上单调递减,在(-2,
2
3
)上单调递增,在(
2
3
,+∞)上单调递减,
∴f(x)=-x3-2x2+4x在x=-2时,
f(x)的极小值=-8
(2)由(1)得x=-2时,f(x)的极小值为-8,当x=
2
3
时,f(x)的极大值为
40
27

若方程f(x)+p=0有唯一实数解,
则函数f(x)的图象与直线y=-p有且只有一个交点,则p<-
40
27
,或p>8
(3)要使对x∈[-3,3]都有f(x)≥m2-14m恒成立,
只需f(x)min≥m2-14m即可.
由(1)可知函数y=f(x)在[-3,2)上单调递减,在(-2,
2
3
)上单调递增,在(
2
3
,3]上单调递减
且f(-2)=-8,f(3)=-33-2×32+4×3=-33<-8
∴f(x)min=f(3)=-33(11分)-33≥m2-14m⇒3≤m≤11
故所求的实数m的取值范围为{m|3≤m≤11}.
点评:本题考查会利用导数求函数极值,理解函数恒成立时所取的条件,数形结合的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、设f(x)=x3-3x2-9x+1,则不等式f′(x)<0的解集是
(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-
1
2
)•f(
1
2
)<0,则方程f(x)=0在[-1,1]内(  )
A、可能有3个实数根
B、可能有2个实数根
C、有唯一的实数根
D、没有实数根

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3-3ax2+2bx在x=1处有极小值-1,试求a、b的值,并求出f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3-ax2-bx-c,x∈[-1,1],记y=|f(x)|的最大值为M.
(Ⅰ)当a=c=0,b=
34
时,求M的值;
(Ⅱ)当a,b,c取遍所有实数时,求M的最小值.
(以下结论可供参考:对于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,当且仅当a,b,c,d同号时取等号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+ax2+bx+c,又k是一个常数,已知当k<0或k>4时,f(x)-k=0只有一个实根,当0<k<4时,f(x)-k=0有三个相异实根,则下列命题中错误的是(  )

查看答案和解析>>

同步练习册答案