精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1-x
ax
+lnx

(1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2]
上的最大值和最小值;
(3)当a=1时,求证:对大于1的任意正整数n,都有lnn>
1
2
+
1
3
+
1
4
+…+
1
n
分析:(1)对函数f(x)进行求导,令导函数大于等于0在[1,+∞)上恒成立即可求出a的范围.
(2)将a=1代入函数f(x)的解析式,判断其单调性进而得到最大值和最小值.
(3)先判断函数f(x)的单调性,令x=
n
n-1
代入函数f(x)根据单调性得到不等式ln
n
n-1
1
n
,令n=1,2,…代入可证.
解答:解:(1)∵f(x)=
1-x
ax
+lnx

f′(x)=
ax-1
ax2
(a>0)

∵函数f(x)在[1,+∞)上为增函数
f′(x)=
ax-1
ax2
≥0
对x∈[1,+∞)恒成立,
∴ax-1≥0对x∈[1,+∞)恒成立,即a≥
1
x
对x∈[1,+∞)恒成立
∴a≥1
(2)当a=1时,f′(x)=
x-1
x2

∴当x∈[
1
2
,1)
时,f′(x)<0,故f(x)在x∈[
1
2
,1)
上单调递减;
当x∈(1,2]时,f′(x)>0,故f(x)在x∈(1,2]上单调递增,
∴f(x)在区间[
1
2
,2]
上有唯一极小值点,故f(x)min=f(x)极小值=f(1)=0
f(
1
2
)=1-ln2,f(2)=-
1
2
+ln2,f(
1
2
)-f(2)=
3
2
-2ln2=
lne3-ln16
2

∵e3>16
f(
1
2
)-f(2)>0,即f(
1
2
)>f(2)

∴f(x)在区间[
1
2
,2]
上的最大值f(x)max=f(
1
2
)=1-ln2

综上可知,函数f(x)在[
1
2
,2]
上的最大值是1-ln2,最小值是0.
(3)当a=1时,f(x)=
1-x
x
+lnx
f′(x)=
x-1
x2

故f(x)在[1,+∞)上为增函数.
当n>1时,令x=
n
n-1
,则x>1,故f(x)>f(1)=0
f(
n
n-1
)=
1-
n
n-1
n
n-1
+ln
n
n-1
=-
1
n
+ln
n
n-1
>0
,即ln
n
n-1
1
n

ln
2
1
1
2
,ln
3
2
1
3
,ln
4
3
1
4
,…,ln
n
n-1
1
n

ln
2
1
+ln
3
2
+ln
4
3
+…+ln
n
n-1
1
2
+
1
3
+
1
4
+…+
1
n

lnn>
1
2
+
1
3
+
1
4
+…+
1
n

即对大于1的任意正整数n,都有lnn>
1
2
+
1
3
+
1
4
+…+
1
n
点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案