精英家教网 > 高中数学 > 题目详情
(2012•湖北模拟)已知a为常数,a∈R,函数f(x)=x2+ax-lnx,g(x)=ex.(其中e是自然对数的底数)
(Ⅰ)过坐标原点O作曲线y=f(x)的切线,设切点为P(x0,y0),求证:x0=1;
(Ⅱ)令F(x)=
f(x)g(x)
,若函数F(x)在区间(0,1]上是单调函数,求a的取值范围.
分析:(I)先对函数求导,f′(x)=2x+a-
1
x
,可得切线的斜率k=2x0+a-
1
x0
=
y0
x0
=
x02+ax0-lnx0
x0

,即x02+lnx0-1=0,由x0=1是方程的解,且y=x2+lnx-1在(0,+∞)上是增函数,可证
(Ⅱ)由F(x)=
f(x)
g(x)
=
x2+ax-lnx
ex
F′(x)=
-x2+(2-a)x+a-
1
x
+lnx
ex
,先研究函数h(x)=-x2+(2-a)x+a-
1
x
+lnx
,则h′(x)=-2x+
1
x2
+
1
x
+2-a

由h'(x)在(0,1]上是减函数,可得h'(x)≥h'(1)=2-a,通过研究2-a的正负可判断h(x)的单调性,进而可得函数F(x)的单调性,可求
解答:解:(I)f′(x)=2x+a-
1
x
(x>0).  …(2分)
过切点P(x0,y0)的切线的斜率k=2x0+a-
1
x0
=
y0
x0
=
x02+ax0-lnx0
x0

整理得x02+lnx0-1=0.…(4分)
显然,x0=1是这个方程的解,又因为y=x2+lnx-1在(0,+∞)上是增函数,
所以方程x2+lnx-1=0有唯一实数解.故x0=1.…(6分)
(Ⅱ)F(x)=
f(x)
g(x)
=
x2+ax-lnx
ex
F′(x)=
-x2+(2-a)x+a-
1
x
+lnx
ex
.…(8分)
h(x)=-x2+(2-a)x+a-
1
x
+lnx
,则h′(x)=-2x+
1
x2
+
1
x
+2-a

易知h'(x)在(0,1]上是减函数,从而h'(x)≥h'(1)=2-a.   …(10分)
(1)当2-a≥0,即a≤2时,h'(x)≥0,h(x)在区间(0,1)上是增函数.
∵h(1)=0,∴h(x)≤0在(0,1]上恒成立,即F'(x)≤0在(0,1]上恒成立.
∴F(x)在区间(0,1]上是减函数.
所以,a≤2满足题意.            …(12分)
(2)当2-a<0,即a>2时,设函数h'(x)的唯一零点为x0
则h(x)在(0,x0)上递增,在(x0,1)上递减.又∵h(1)=0,∴h(x0)>0.
又∵h(e-a)=-e-2a+(2-a)e-a+a-ea+lne-a<0,
∴h(x)在(0,1)内有唯一一个零点x',
当x∈(0,x')时,h(x)<0,当x∈(x',1)时,h(x)>0.
从而F(x)在(0,x')递减,在(x',1)递增,与在区间(0,1]上是单调函数矛盾.
∴a>2不合题意.
综合(1)(2)得,a≤2.           …(15分)
点评:考查学生利用导数研究函数的单调能力,函数单调性的判定,以及导数的运算,试题具有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖北模拟)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上有一个顶点到两个焦点之间的距离分别为3+2
2
3-2
2

(1)求椭圆的方程;
(2)如果直线x=t(t∈R)与椭圆相交于A,B,若C(-3,0),D(3,0),证明直线CA与直线BD的交点K必在一条确定的双曲线上;
(3)过点Q(1,0)作直线l(与x轴不垂直)与椭圆交于M、N两点,与y轴交于点R,若
RM
MQ
RN
NQ
,证明:λ+μ为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)在△ABC中,M是BC的中点,AM=3,点P在AM上,且满足
AP
=2
PM
,则
PA
•(
PB
+
PC
)
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)已知函数y=g(x)的图象由f(x)=sin2x的图象向右平移φ(0<φ<π)个单位得到,这两个函数的部分图象如图所示,则φ=
π
3
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)设Sn是等比数列{an}的前n项和,若S1,2S2,3S3成等差数列,则公比q等于
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)函数f(x)=aex,g(x)=lnx-lna,其中a为正常数,且函数y=f(x)和y=g(x)的图象在其与坐标轴的交点处的切线互相平行.
(1)求a的值;
(2)若存在x使不等式
x-m
f(x)
x
成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域中的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.

查看答案和解析>>

同步练习册答案