精英家教网 > 高中数学 > 题目详情
 已知:如图12,P是正方形ABCD所在平面外一点,PA=PB=PC=PD=a,AB=a.
求:平面APB与平面CPD相交所成较大的二面角的余弦值.
分析:为了找到二面角及其平面角,必须依据题目的条件,找出两个平面的交线.
解:因为  AB∥CD,CD 平面CPD,AB 平面CPD.
所以  AB∥平面CPD.
又  P∈平面APB,且P∈平面CPD,
因此 平面APB∩平面CPD=l,且P∈l.
所以 二面角B-l-C就是平面APB和平面CPD相交所得到的一个二面角.
因为  AB∥平面CPD,AB 平面APB,平面CPD∩平面APB=l,
所以  AB∥l.
过P作PE⊥AB,PE⊥CD.
因为  l∥AB∥CD,
因此  PE⊥l,PF⊥l,
所以 ∠EPF是二面角B-l-C的平面角.
因为  PE是正三角形APB的一条高线,且AB=a,

因为  E,F分别是AB,CD的中点,
所以  EF=BC=a.
在△EFP中,

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图:已知直三棱柱ABC—A1B1C1,AB=AC,F为棱BB1上一点,BF∶FB1=2∶1,BF=BC=2a。
  (I)若D为BC的中点,E为AD上不同于A、D的任意一点,证明EF⊥FC1
  (II)试问:若AB=2a,在线段AD上的E点能否使EF与平面BB1C1C成60°角,为什么?证明你的结论

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,正六棱柱ABCD-EFA1B1C1D1E1F1的底面边长为1,侧棱长为,则这个棱柱的侧面对角线E1DBC1所成的角是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,为60°的二面角,等腰直角三角形MPN的直角顶点Pl上,Mα,Nβ,且MPβ所成的角等于NPα所成的角.
(1)求证: MN分别与αβ所成角相等;
(2)求MNβ所成角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方体ABCDA1B1C1D1中,EF分别是BB1CC1的中点,求异面直线AEBF所成

角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在三棱锥中,三条棱两两互相垂直,且边的中点,则与平面所成的角的大小是    ( 用反三角函数表示);

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个多面体的直观图及三视图如图所示:(其中M、N、P、Q分别是FC、AF、DC、AD的中点)
(1)直线DE与直线BF的位置关系是什么、夹角大小为多少?
(2)判断并证明直线MN与直线PQ的位置关系;
(3)求三棱锥D-ABF的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知三棱锥A-BCD的侧视图,俯视图都是直角三角形,尺寸如图所示.
(1)求异面直线AB与CD所成角的余弦值;
(2)在线段AC上是否存在点F,使得BF⊥面ACD?若存在,求出CF的长度;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角的平面角为ABBCBCCDBCl上,,若,则AD的长为                  .

查看答案和解析>>

同步练习册答案