精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)设θ[0π],且fθ1,求θ的值;

2)在ABC中,AB1fC1,且ABC的面积为,求sinA+sinB的值.

【答案】121

【解析】

1)化简得,转化条件得,即可得解;

2)由(1)知,由面积可得,由余弦定理得a2+b27,联立方程可求得,再利用正弦定理即可得解.

1

fθ,∴

θ[0π],∴(θ)∈[],∴θ

2)由fC1C∈(0π),由(1)可得:C.由△ABC的面积为,∴absin,∴

由余弦定理可得:1a2+b22abcos,可得:a2+b27

联立解得:a2b;或b2a

sinA+sinBa+b)=1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为(其中α为参数),曲线C2:(x﹣1)2+y2=1,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.

(1)求曲线C1的普通方程和曲线C2的极坐标方程;

(2)若射线θ=(ρ>0)与曲线C1,C2分别交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC中,角ABC所对的边分别为abc,若(2bccosAacosC

1)求角A

2)若ABC的外接圆面积为π,求ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数gx)=bx1),其中a≠0b≠0

1)若ab,讨论Fx)=fx)﹣gx)的单调区间;

2)已知函数fx)的曲线与函数gx)的曲线有两个交点,设两个交点的横坐标分别为x1x2,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型企业生产的某批产品细分为个等级,为了了解这批产品的等级分布情况,从仓库存放的件产品中随机抽取件进行检测、分类和统计,并依据以下规则对产品进行打分:级或级产品打分;级或级产品打分;级、级、级或级产品打分;其余产品打.现在有如下检测统计表:

等级

1

2

3

4

5

6

7

8

9

10

频数

10

90

100

200

200

100

100

100

70

30

规定:打分不低于分的为优良级.

1)①试估计该企业库存的件产品为优良级的概率;

②请估计该企业库存的件产品的平均得分.

2)从该企业库存的件产品中随机抽取件,请估计这件产品的打分之和为分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知λμ为常数,且为正整数,λ≠1,无穷数列{an}的各项均为正整数,其前n项和为Sn,对任意的正整数nSn=λanμ.记数列{an}中任意两不同项的和构成的集合为A

1)证明:无穷数列{an}为等比数列,并求λ的值;

2)若2015∈A,求μ的值;

3)对任意的n∈N*,记集合Bn={x|3μ2n1x3μ2nx∈A}中元素的个数为bn,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中

1)若,且的极大值点,求的取值范围;

2)当时,方程有唯一实数根,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC所对的边分别为abc,cosB

(Ⅰ)若c=2a,求的值

(Ⅱ)若CB,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2022年北京冬季奥运会即第24届冬季奥林匹克运动会,将在202224220日在北京和张家口联合举行.某研究机构为了解大学生对冰壶运动的兴趣,随机从某大学学生中抽取了120人进行调查,经统计男生与女生的人数之比为1113,男生中有30人表示对冰壶运动有兴趣,女生中有15人表示对冰壶运动没有兴趣.

1)完成2×2列联表,并回答能否有99%的把握认为对冰壶是否有兴趣与性别有关

有兴趣

没有兴趣

合计

30

15

合计

120

2)若将频率视为概率,现再从该校全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰壶有兴趣的人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望和方差.

附:参考公式,其中na+b+c+d.

临界值表:

PK2K0

0.150

0.100

0.050

0.025

0.010

K0

2.072

2.076

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案