【题目】选修4-4:坐标系与参数方程
已知在平面直角坐标系中,曲线的参数方程是 (为参数),以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.
(Ⅰ) 求曲线与交点的平面直角坐标;
(Ⅱ) 点分别在曲线, 上,当最大时,求的面积(为坐标原点).
科目:高中数学 来源: 题型:
【题目】定义:在等式 中,把, , ,…, 叫做三项式的次系数列(如三项式的1次系数列是1,1,1).
(1)填空:三项式的2次系数列是_______________;
三项式的3次系数列是_______________;
(2)由杨辉三角数阵表可以得到二项式系数的性质,类似的请用三项式次系数列中的系数表示 (无须证明);
(3)求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆C的参数方程为(θ为参数),直线l的参数方程为(t为参数).
(Ⅰ)写出椭圆C的普通方程和直线l的倾斜角;
(Ⅱ)若点P(1,2),设直线l与椭圆C相交于A,B两点,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,椭圆: 的离心率为,直线l:y=2上的点和椭圆上的点的距离的最小值为1.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 已知椭圆的上顶点为A,点B,C是上的不同于A的两点,且点B,C关于原点对称,直线AB,AC分别交直线l于点E,F.记直线与的斜率分别为, .
① 求证: 为定值;
② 求△CEF的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的部分图象如图所示.
(1) 求函数的解析式;
(2) 如何由函数的通过适当图象的变换得到函数的图象, 写出变换过程;
(3) 若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x-1|+|2x-1|.
(Ⅰ)若对x>0,不等式f(x)≥tx恒成立,求实数t的最大值M;
(Ⅱ)在(Ⅰ)成立的条件下,正实数a,b满足a2+b2=2M.证明:a+b≥2ab.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,过椭圆: 的左右焦点分别作直线, 交椭圆于与,且.
(1)求证:当直线的斜率与直线的斜率都存在时, 为定值;
(2)求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函数f(x)的定义域;
(2)若函数f(x)的最小值为﹣4,求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com