精英家教网 > 高中数学 > 题目详情

【题目】如图,已知在四棱锥中,底面为矩形,侧面底面.

1)求二面角的大小;

2)求点到平面的距离.

【答案】12

【解析】

1)在平面PBC内作POBCO为垂足,在底面ABCD内作OEBCOEADE,连结PE,由已知ABCD为矩形,推导出PO⊥底面ABCDPOADOEBC,从而OEADAD⊥平面POEADPE,再由ADOE,得∠OEP是二面角PADB的平面角.由此能求出二面角PADB的大小;

2)推导出BC∥平面PAD,从而点B到平面PAD的距离等于点O到平面PA的距离.在RtPOE中作OHPEH为垂足,推导出OH⊥平面PAD,从而点O到平面PAD的距离即为OH的长,此能求出点B到平面PAD的距离.

解:(1)在平面内作为垂足,

中,,所以.

在底面内作,连结

由已知为矩形,易知也是矩形,故.

又平面底面,平面底面

平面,所以底面

底面,所以

,所以

平面平面

,所以平面

因为平面,所以

又因为,所以是二面角的平面角.

因为底面底面,所以

中,

所以,故二面角的大小为.

2)因为,而平面平面

所以平面,又

所以,点到平面的距离等于点到平面的距离.

中作为垂足,

由(1)知平面,而平面,所以

平面平面,所以平面

所以,点到平面的距离即为的长.

中,

综上,点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在边长为4的菱形中, ,点分别是的中点, ,沿翻折到,连接,得到如图的五棱锥,且

(1)求证: 平面(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为定义在上的偶函数,当时,.

1)当时,求函数的单调区间;

2)若函数有两个零点:求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过椭圆右焦点的直线与椭圆交于两点,当直线轴垂直时,.

1)求椭圆的标准方程;

2)当直线轴不垂直时,在轴上是否存在一点(异于点),使轴上任意点到直线的距离均相等?若存在,求点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程与曲线的直角坐标方程;

2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于,求面积的最小值,并求此时四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知中心在坐标原点,焦点在坐标轴上的椭圆的右焦点为,且离心率,过点且斜率为的直线交椭圆于点两点,的中点,过作直线的垂线,直线与直线相交于点.

1)求椭圆的标准方程;

2)证明:点在一条定直线上;

3)当最大时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直角梯形中,两点分别在线段上运动,且.将三角形沿折起,使点到达的位置,且平面平面.

1)判断直线与平面的位置关系并证明;

2)证明:的长度最短时,分别为的中点;

3)当的长度最短时,求平面与平面所成角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,,点分别为的中点.

(1)证明:平面∥平面

(2)若,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知椭圆:()的离心率为,右准线方程是直线l,点P为直线l上的一个动点,过点P作椭圆的两条切线,切点分别为AB(点Ax轴上方,点Bx轴下方).

1)求椭圆的标准方程;

2)①求证:分别以为直径的两圆都恒过定点C

②若,求直线的方程.

查看答案和解析>>

同步练习册答案