精英家教网 > 高中数学 > 题目详情
(本小题共10分)
三棱柱ABC—A1B1C1中,CC1⊥平面ABC,△ABC是边长为2的等边三角形,D为AB边中点,且CC1=2AB.

(1)(4′)求证:平面C1CD⊥平面ABC;
(2)(6′)求三棱锥D—CBB1的体积.
证明:(1)(4′)CC1⊥平面ABC,
平面C1CD⊥平面ABC   解:(2)(6′)CC1⊥平面ABC    CC1∥BB1   BB1⊥平面ABC  
    
所以,三棱锥D—CBB1的体积为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


(8分)
如图,在四面体中,,点分别是的中点.求证:
(1)直线
(2)平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(8分)
已知四边形是空间四边形,分别是边的中点,求证:四边形是平行四边形。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)直棱柱中,底面是直角梯形,
(Ⅰ)求证:
(Ⅱ)在上是否存一点,使得与平面
与平面都平行?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题


第Ⅱ卷(非选择题,共90分)
二、填空题:(本大题4小题,每小题5分,满分20分)
13.用一个平面去截正方体,其截面是一个多边形,则这个多边形的边数最多是    条 。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文)(本小题8分)
如图,在四棱锥中,平面
(1)求证:
(2)求点到平面的距离
证明:(1)平面

平面 (4分)
(2)设点到平面的距离为

求得即点到平面的距离为              (8分)
(其它方法可参照上述评分标准给分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知,求点的坐标,使四边形为直角梯形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

两个平面将空间最多分成______ ____个部分.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体中,直线和直线所成的角的大小为(    ).
A.B.C.D.

查看答案和解析>>

同步练习册答案