精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆与抛物线y2x有一个相同的焦点,且该椭圆的离心率为.

(1)求椭圆的标准方程;

(2)过点P(0,1)的直线与该椭圆交于AB两点,O为坐标原点,若,求△AOB的面积.

【答案】(1);(2)

【解析】试题分析:(1)先求椭圆焦点得c,再根据离心率列方程组可得a=2,b2=2 (2)将OP视为底,根据三角形面积公式得S |OP|·|x1x2|,再联立直线方程与椭圆方程,利用韦达定理化简得|x1x2|,最后根据解出k,代入解得△AOB的面积.

试题解析:解:(1)依题意,设椭圆的标准方程为=1(a>b>0),

由题意可得c,又e,∴a=2.

b2a2c2=2,

∴椭圆的标准方程为=1.

(2)设A(x1y1),B(x2y2),

=2,得

设直线AB的方程为ykx+1,代入椭圆方程整理,得

(2k2+1)x2+4kx-2=0,

x1x2=-x1·x2=-.

x1=-2x2代入上式整理可得, 2

解得k2.

∴△AOB的面积S|OP|·|x1x2|

·.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.8元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照分成8组,制成了如图1所示的频率分布直方图.

(Ⅰ)假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.

(ⅰ)现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水量都超过12吨的概率;

(ⅱ)试估计全市居民用水价格的期望(精确到0.01);

(Ⅱ)如图2是该市居民李某2016年1~6月份的月用水费(元)与月份的散点图其拟合的线性回归方程是.若李某201617月份水费总支出为294.6元,试估计李某7月份的用水吨数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}(nN*),首项a13,前n项和为Sn,且S3a3S5a5S4a4成等差数列.

1)求数列{an}的通项公式;

2)数列{nan}的前n项和为Tn,若对任意正整数n,都有Tn[ab],求ba的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=﹣1,b1=1,a2+b2=2.

(1)若a3+b3=5,求{bn}的通项公式;

(2)若T3=21,求S3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是直角梯形, 平面平面

Ⅰ)求证: 平面

Ⅱ)求平面和平面所成二面角(小于)的大小.

Ⅲ)在棱上是否存在点使得平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥SABC的所有顶点都在球O的球面上,SA⊥平面ABCSA=2AB=1AC=2∠BAC=60°,则球O的表面积为

A. 4 B. 12 C. 16 D. 64

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.

(1).证明:平面PAB⊥平面PAD;

(2).若PA=PD=AB=DC, ∠APD =90°,且四棱锥PABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的极坐标方程是以极点为原点,极轴为轴的正半轴建立极坐标系,曲线的参数方程为为参数.

(1)写出直线的普通方程与曲线的直角坐标方程;

(2)设为曲线上任意一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)是一个水平放置的正三棱柱 是棱的中点.正三棱柱的正(主)视图如图(2)

()求正三棱柱的体积;

()证明:

()图(1)中垂直于平面的平面有哪几个?(直接写出符合要求的平面即可,不必说明或证明)

查看答案和解析>>

同步练习册答案