【题目】如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,AC∩BD=O,△PAC是边长为2的等边三角形,.
(1)求四棱锥P-ABCD的体积VP-ABCD;
(2)在线段PB上是否存在一点M,使得CM∥平面BDF?如果存在,求的值,如果不存在,请说明理由.
【答案】(1)2;(2)
【解析】
(1)证明PO⊥平面ABCD,计算PO,AC,BD,代入体积公式计算;
(2)过C构造平面BCE,使得平面BCE∥BDF,利用三角形的中线的性质得出M的位置.
(1)解:∵底面ABCD是菱形,∴O为AC,BD的中点
又∵PA=PC,PB=PD,∴PO⊥AC,PO⊥BD,
∵AC∩BD=O,AC面ABCD,BD面ABCD,
∴PO⊥底面ABCD.
△PAC中,AC=2,∴,△PBD中,,,
.
(2)过C作CE∥BD交AB延长线于E,过E作EH∥BF交PA于H,EH与PB交点为M,
∵CE∥BD,BD面BDF,CE面BDF,∴CE∥面BDF,
∵EH∥BF,BF面BDF,EH面BDF,∴EH∥面BDF,
又∵CE∩EH=E,CE面CEM,EH面CEM,
∴面BDF∥面CEM,CM面CEM,
∴CM∥面BDF,
∵BD∥CE,DC∥BE,
∴四边形BECD为平行四边形,∴DC=BE=AB,B为AE中点,
∵∴H为PA中点,
∴M为中线PB与中线EH的交点,
∴M是△APE的重心,∴=.
科目:高中数学 来源: 题型:
【题目】已知点到点的距离与点到直线的距离相等.
(1)求点的轨迹方程;
(2)设点的轨迹为曲线,过点且斜率为1的直线与曲线相交于不同的两点,,为坐标原点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆经过点,且点到椭圆的两焦点的距离之和为.
(l)求椭圆的标准方程;
(2)若是椭圆上的两个点,线段的中垂线的斜率为且直线与交于点,为坐标原点,求证:三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设甲、乙、丙三个羽毛球协会的运动员人数分别为18,9,18,先采用分层抽样的方法从这三个协会中抽取5名运动员参加比赛.
(1)求应从这三个协会中分别抽取的运动员人数;
(2)将抽取的5名运动员进行编号,编号分别为,从这5名运动员中随机抽取2名参加双打比赛. 设“编号为的两名运动员至少有一人被抽到” 为事件A,求事件A发生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com