精英家教网 > 高中数学 > 题目详情
设M是圆x2+y2-2x-2y+1=0上的点,则M到直线3x+4y-22=0的最长距离是______,最短距离是______.
∵圆x2+y2-2x-2y+1=0的圆心(1,1),半径为1,
圆心(1、1)到直线3x+4y-22=0的距离d=
|3+4-22|
5
=3,
∴圆x2+y2-2x-2y+1=0上的点到直线3x+4y-22=0距离的最小值是3-r=3-1=2,
最大值为:3+r=3+1=4.
故答案为:4;2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xoy中,设二次函数f(x)=x2+2x+b(x∈R)的图象与两坐标轴有三个不同的交点.经过这三个交点的圆记为C.
(I)求实数b的取值范围;
(II)求圆C的一般方程;
(III)圆C是否经过某个定点(其坐标与b无关)?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,点(1,-
3
2
)
为椭圆上的一点,O为坐标原.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线l:y=kx+m为圆x2+y2=
4
5
的切线,直线l交椭圆于A、B两点,求证:∠AOB为直角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆C1:x2+y2+D1x+E1y-3=0与圆C2:x2+y2+D2x+E2y-3=0都经过点A(2,-1),则同时经过点(D1,E1)和点(D2,E2)的直线方程为(  )
A.2x-y+2=0B.x-y-2=0C.x-y+2=0D.2x+y-2=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆A:(x-2)2+y2=1,曲线B:6-x=
4-y2
和直线l:y=x.
(1)若点M、N、P分别是圆A、曲线B和直线l上的任意点,求|PM|+|PN|的最小值;
(2)已知动直线m:(a-2)x+by-2a+3=0(a,b∈R)与圆A相交于S、T两点,又点Q的坐标是(a,b).
①判断点Q与圆A的位置关系;
②求证:当实数a,b的值发生变化时,经过S、T、Q三点的圆总过定点,并求出这个定点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l:mx+y-m=0交圆C:x2+y2-4x-2y=0于A,B两点,当|AB|最短时,直线l的方程是(  )
A.x+y-1=0B.x-y-1=0C.x-y+1=0D.x+y+2=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线l:y=2x+b将圆x2+y2-2x-4y+4=0的面积平分,则b=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,曲线y=x2+2x-3与坐标轴的交点都在圆C上.
(Ⅰ)求圆C的方程;
(Ⅱ)若圆C被直线x-y+a=0截得的弦长为2
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线ax+by+c=0(abc≠0)与圆x2+y2=1相切,若△ABC的三边长分别为|a|,|b|,|c|,则该三角形为______(判断三角形的形状).

查看答案和解析>>

同步练习册答案