【题目】如图所示,该几何体是由一个直三棱柱ABE﹣DCF和一个四棱锥P﹣ABCD组合而成,其中EF=EA=EB=2,AE⊥EB,PA=PD,平面PAD∥平面EBCF.
(1)证明:平面PBC∥平面AEFD;
(2)求直线AP与平面PCD所成角的正弦值.
【答案】(1)见解析(2).
【解析】
(1)取EF中点O,BC中点G,AD中点H,连结OH,PH,OG,PG,证明OH∥PG,AD∥BC,故得证.
(2)以O为原点,OE为x轴,OG为y轴,OH为z轴,建立空间直角坐标系,计算平面PCD的法向量,借助线面角的向量公式即得解.
证明:取EF中点O,BC中点G,AD中点H,连结OH,PH,OG,PG,
由题意得PH2=OH=OG,
∴PHOG,∴四边形PHOG是平行四边形,∴OH∥PG,
∵ABDC,∴四边形ABCD是平行四边形,∴AD∥BC,
∵AD∩OH=H,BC∩PG=G,
∴平面PBC∥平面AEFD.
以O为原点,OE为x轴,OG为y轴,OH为z轴,建立空间直角坐标系,
则A(1,0,2),P(0,2,2),C(﹣1,2,0),D(﹣1,0,2),
(1,﹣2,0),(﹣1,0,﹣2),(﹣1,﹣2,0),
设平面PCD的法向量(x,y,z),
则,取x=2,得(2,﹣1,﹣1),
设直线AP与平面PCD所成角为θ,
则sinθ.
∴直线AP与平面PCD所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】某校要在一条水泥路边安装路灯,其中灯杆的设计如图所示,AB为地面,CD,CE为路灯灯杆,CD⊥AB,∠DCE=,在E处安装路灯,且路灯的照明张角∠MEN=.已知CD=4m,CE=2m.
(1)当M,D重合时,求路灯在路面的照明宽度MN;
(2)求此路灯在路面上的照明宽度MN的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,椭圆截直线所得的线段的长度为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于两点,点是椭圆上的点,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆(a>0,b>0)的左右焦点分别为F1,F2,与y轴正半轴交于点B,若△BF1F2为等腰直角三角形,且直线BF1被圆x2+y2=b2所截得的弦长为2,
(1)求椭圆的方程;
(2)直线l:y=kx+m与椭圆交于点A,C,线段AC的中点为M,射线MO与椭圆交于点P,点O为△PAC的重心,求证:△PAC的面积S为定值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有曲池,上中周二丈,外周四丈,广一丈,下中周一丈四尺,外周二丈四尺,广五尺,深一丈,问积几何?”其意思为:“今有上下底面皆为扇形的水池,上底中周2丈,外周4丈,宽1丈;下底中周1丈4尺,外周长2丈4尺,宽5尺;深1丈.问它的容积是多少?”则该曲池的容积为( )立方尺(1丈=10尺,曲池:上下底面皆为扇形的土池,其容积公式为[(2×上宽+下宽)(2×下宽+上宽)]×深)
A.B.1890C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若关于的不等式的解集为,求函数的最小值;
(2)是否存在实数,使得对任意,存在,不等式成立?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x-a|-x(a>0).
(1)若a=3,解关于x的不等式f(x)<0;
(2)若对于任意的实数x,不等式f(x)-f(x+a)<a2+恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,已知直线l1的参数方程为(t为参数),直线l2的参数方程为(t为参数),其中α∈(0,),以原点O为点x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ﹣2sinθ=0.
(1)写出直线l1的极坐标方程和曲线C的直角坐标方程;
(2)设直线l1,l2分别与曲线C交于点A,B(非坐标原点)求|AB|的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com