精英家教网 > 高中数学 > 题目详情

【题目】如图所示,该几何体是由一个直三棱柱ABEDCF和一个四棱锥PABCD组合而成,其中EFEAEB2AEEBPAPD,平面PAD∥平面EBCF

1)证明:平面PBC∥平面AEFD

2)求直线AP与平面PCD所成角的正弦值.

【答案】1)见解析(2

【解析】

1)取EF中点OBC中点GAD中点H,连结OHPHOGPG,证明OHPGADBC,故得证.

2)以O为原点,OEx轴,OGy轴,OHz轴,建立空间直角坐标系,计算平面PCD的法向量,借助线面角的向量公式即得解.

证明:取EF中点OBC中点GAD中点H,连结OHPHOGPG

由题意得PH2OHOG

PHOG四边形PHOG是平行四边形,OHPG

ABDC四边形ABCD是平行四边形,ADBC

ADOHHBCPGG

平面PBC平面AEFD

O为原点,OEx轴,OGy轴,OHz轴,建立空间直角坐标系,

A102),P022),C(﹣120),D(﹣102),

1,﹣20),(﹣10,﹣2),(﹣1,﹣20),

设平面PCD的法向量xyz),

,取x2,得2,﹣1,﹣1),

设直线AP与平面PCD所成角为θ

sinθ

直线AP与平面PCD所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校要在一条水泥路边安装路灯,其中灯杆的设计如图所示,AB为地面,CDCE为路灯灯杆,CDAB,∠DCE=,在E处安装路灯,且路灯的照明张角∠MEN=.已知CD=4mCE=2m.

(1)MD重合时,求路灯在路面的照明宽度MN

(2)求此路灯在路面上的照明宽度MN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆截直线所得的线段的长度为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,点是椭圆上的点,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆a0b0)的左右焦点分别为F1F2,与y轴正半轴交于点B,若BF1F2为等腰直角三角形,且直线BF1被圆x2+y2b2所截得的弦长为2

1)求椭圆的方程;

2)直线lykx+m与椭圆交于点AC,线段AC的中点为M,射线MO与椭圆交于点P,点OPAC的重心,求证:PAC的面积S为定值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:今有曲池,上中周二丈,外周四丈,广一丈,下中周一丈四尺,外周二丈四尺,广五尺,深一丈,问积几何?其意思为:今有上下底面皆为扇形的水池,上底中周2丈,外周4丈,宽1丈;下底中周14尺,外周长24尺,宽5尺;深1丈.问它的容积是多少?则该曲池的容积为( )立方尺(1丈=10尺,曲池:上下底面皆为扇形的土池,其容积公式为[上宽+下宽)下宽+上宽)深)

A.B.1890C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若关于的不等式的解集为,求函数的最小值;

2)是否存在实数,使得对任意,存在,不等式成立?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)若函数有两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|xa|-x(a>0).

(1)若a=3,解关于x的不等式f(x)<0;

(2)若对于任意的实数x,不等式f(x)-f(xa)<a2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知直线l1的参数方程为t为参数),直线l2的参数方程为t为参数),其中α∈(0),以原点O为点x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ2sinθ0

1)写出直线l1的极坐标方程和曲线C的直角坐标方程;

2)设直线l1l2分别与曲线C交于点AB(非坐标原点)求|AB|的值.

查看答案和解析>>

同步练习册答案