精英家教网 > 高中数学 > 题目详情

【题目】在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为

【答案】
【解析】解:圆(x﹣5)2+y2=9的圆心为(5,0),半径为3.圆心到直线y=kx的距离为 ,要使直线y=kx与圆(x﹣5)2+y2=9相交,则 <3,解得﹣ <k< .∴在区间[﹣1,1]上随机取一个数k,使直线y=kx与圆(x﹣5)2+y2=9相交相交的概率为 .故答案为:
利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的k,最后根据几何概型的概率公式可求出所求.;本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,P(1,1),Ax,0)(x>0),B(0,y)(y>0)

(Ⅰ)若x=,求y的值;

(Ⅱ)若OAB的周长为2,求向量的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】环境污染已经触目惊心,环境质量已经成为“十三五”实现全面建成小康社会奋斗目标的短板和瓶颈。绵阳某化工厂每一天中污水污染指数与时刻(时)的函数关系为其中为污水治理调节参数,且

(1)若,求一天中哪个时刻污水污染指数最低;

(2)规定每天中的最大值作为当天的污水污染指数,要使该厂每天的污水污染指数不超过,则调节参数应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,角的终边经过点.若的图象上任意两点,且当时,的最小值为.

(1) 的值

(2)求函数上的单调递减区间;

(3)当时,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若在定义域内存在实数x0,使得fx0+1)=fx0)+f(1)成立,则称函数fx)有“漂移点”.

(1)用零点存在定理证明:函数fx)=x2+2x在[0,1]上有“漂移点”;

(2)若函数gx)=lg()在(0,+∞)上有“漂移点”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=
(1)证明:a+b=2c;
(2)求cosC的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=

(1)若f(2)=a,求a的值;

(2)当a=2时,若对任意互不相等的实数x1x2∈(mm+4),都有>0成立,求实数m的取值范围;

(3)判断函数gx)=fx)-x-2aa<0)在R上的零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称之为三角形的欧拉线.已知的顶点,若其欧拉线方程为,则顶点C的坐标是()

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,若函数y=f(f(x))-a 恰有5个零点,则实数a的取值范围为______

查看答案和解析>>

同步练习册答案