精英家教网 > 高中数学 > 题目详情
17.某校开展运动会,招募了8名男志愿者和12名女志愿者,将这20名志愿者的身高编成如下茎叶图(单位:cm)
若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”.
(Ⅰ)求8名男志愿者的平均身高和12名女志愿者身高的中位数;
(Ⅱ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?

分析 (Ⅰ)利用茎叶图能求出8名男志愿者的平均身高和12名女志愿者身高的中位数.
(Ⅱ)根据茎叶图,有“高个子”8人,“非高个子”12人,用分层抽样的方法,选中的“高个子”2人,“非高个子”3人,从这五个人选出两人,利用列举法能求出至少有一个是“高个子”的概率.

解答 解:(Ⅰ)8名男志愿者的平均身高为:
$\frac{168+176+177+178+183+184+187+191}{8}=180.5$.…(3分)
12名女志愿者身高的中位数为175.…(6分)
(Ⅱ)根据茎叶图,有“高个子”8人,“非高个子”12人,
用分层抽样的方法,每个人被抽中的概率是$\frac{5}{20}=\frac{1}{4}$.
所以选中的“高个子”有$8×\frac{1}{4}=2$人,设这两个人为A,B;
“非高个子”有$12×\frac{1}{4}=3$人,设这三个人为C,D,E.
从这五个人A,B,C,D,E中选出两人共有:
(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),
(B,E),(C,D),(C,E),(D,E)十种不同方法;…(10分)
其中至少有一人是“高个子”的选法有:
(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E)七种.
因此,至少有一个是“高个子”的概率是$\frac{7}{10}$.…(12分)

点评 本题考查茎叶图的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设m、n是两条不同的直线,α、β是两个不同的平面,则(  )
A.若m∥α,n∥α,则m∥nB.若m∥n,n⊥α,则m⊥αC.若m∥α,m∥β,则α∥βD.若m∥α,α⊥β,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义在R上的奇函数f(x)满足f(x+1)=-$\frac{1}{f(x)}$.当x∈[0,1]时,f(x)=2x-1,则f($log_{\frac{1}{2}}{18}$)的值是-$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$f(x)={(6-x-{x^2})^{\frac{3}{2}}}$的单调递减区间为(  )
A.$[{-\frac{1}{2},2}]$B.$[{-3,-\frac{1}{2}}]$C.$[-\frac{1}{2},+∞)$D.$(-∞,-\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}满足${a_n}+{a_{n-1}}={({-1})^{\frac{{n({n+1})}}{2}}}n,{S_n}$是其前n项和,若S2017=-1007-b,且a1b>0,则$\frac{1}{a_1}+\frac{2}{b}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow a=({\frac{1}{2},sinα})$,$\overrightarrow b=({sinα,1})$,若$\overrightarrow a∥\overrightarrow b$,则锐角α为(  )
A.30°B.60°C.45°D.75°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=ln({x-2})-\frac{x^2}{2a}$(a为常数,a≠0).
(Ⅰ)当a=1时,求函数f(x)在点(3,f(3))的切线方程
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若f(x)在x0处取得极值,且${x_0}∉[{e+2,{e^3}+2}]$,而f(x)≥0在[e+2,e3+2]上恒成立,求实数a的取值范围.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an},{bn}与函数f(x),{an}是首项a1=15,公差d≠0的等差数列,{bn}满足:bn=f(an).
(1)若a4,a7,a8成等比数列,求d的值;
(2)若d=2,f(x)=|x-21|,求{bn}的前n项和Sn
(3)若d=-1,f(x)=ex,Tn=b1•b2•b3…bn,问n为何值时,Tn的值最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某名学生默写英语单词“bookkeeper(会计)”,他记得这个单词是由3个“e”,2个“o”,2个“k”,b,p,r各一个组成,2个“o”相邻,3个“e”恰有两个相邻,o,e都不在首位,他按此条件任意写出一个字母组合,则他写对这个单词的概率为(  )
A.$\frac{1}{9600}$B.$\frac{1}{18000}$C.$\frac{1}{4500}$D.$\frac{1}{10800}$

查看答案和解析>>

同步练习册答案