精英家教网 > 高中数学 > 题目详情
设a,b,c分别是△ABC的三个角A,B,C所对的边,研究A=2B是a2=b(b+c)的什么条件?以下是某同学的解法:
由A=2B,得sinA=sin2B,即:sinA=2sinB•cosB?a=2bcosB
?a=2b•
a2+c2-b2
2ac
.变形得a2c=a2b+bc2-b3?a2(c-b)
=b(b+c)(c-b)
所以,b=c或a2=b(b+c)
由此可知:A=2B是a2=b(b+c)的必要非充分条件.
请你研究这位同学解法的正误,并结合自己的思考,可以得到“A=2B”是“a2=b(b+c)”的(  )条件.
A.充分非必要B.必要非充分
C.充要D.非充分非必要
此同学的解法是错误的,这是因为当b=c时,亦有a2=b(b+c),这是一个特殊情况,这说明此解法有不完善之处,正确证明过程如下:
先证a2=b(b+c)是A=2B的充分条件
∵a2=b(b+c)
∴4R2sinA2=4R2sinB(sinB+sinC)
∴sinA2=sinB(sinB+sinC)
∴(sinA-sinB)(sinA+sinB)=sinB×sinC
又sinA-sinB=2sin
A-B
2
cos
A+B
2

sinA+sinB=2sin
A+B
2
cos
A-B
2

∴(sinA-sinB)(sinA+sinB)
=2sin
A-B
2
cos
A+B
2
×2sin
A+B
2
cos
A-B
2

=sin(A-B)sin(A+B)
又sin(A-B)sin(A+B)=sinB×sinC=sinB×sin(A+B)
∴sin(A-B)=sinB
∴A-B=B
∴A=2B
再证a2=b(b+c)是A=2B的必要条件,
由上证每步都可逆,故A=2B时,亦有a2=b(b+c),即A=2B是a2=b(b+c)的充分条件
综上得,该同学证明错误,应为充要条件
故选C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a、b、c分别是方程2x=log
1
2
x,(
1
2
)
x
=log
1
2
x,(
1
2
)
x
=log2x
的实数根,则(  )
A、c<b<a
B、a<b<c
C、b<a<c
D、c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b、c分别是△ABC三个内角∠A、∠B、∠C的对边,若向量
m
=(1-cos(A+B),cos
A-B
2
)
n
=(
5
8
,cos
A-B
2
)
m
n
=
9
8

(1)求tanA•tanB的值;
(2)求
absinC
a2+b2-c2
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b、c分别是函数f(x)=(
1
2
)x-log2x,g(x)=2x-log
1
2
x,h(x)=(
1
2
)x-log
1
2
x
的零点,则a、b、c的大小关系为(  )
A、b<c<a
B、a<b<c
C、b<a<c
D、c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b、c分别是先后掷一枚质地均匀的正方体骰子三次得到的点数.
(1)求使函数f(x)=
1
3
bx3+
1
2
(a+c)x2+(a+c-b)x-4
在R上不存在极值点的概率;
(2)设随机变量ξ=|a-b|,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设a,b,c分别是三个内角A,B,C所对的边,b=2,c=1,面积S△ABC=
1
2
,则内角A的大小为
π
6
6
π
6
6

查看答案和解析>>

同步练习册答案