精英家教网 > 高中数学 > 题目详情
14.函数y=$\sqrt{2x+1}$+lg(3-4x)的定义域为(  )
A.(-$\frac{1}{2}$,$\frac{3}{4}$)B.[-$\frac{1}{2}$,$\frac{3}{4}$)C.(-$\frac{1}{2}$,0)∪(0,+∞)D.(-∞,$\frac{1}{2}$]∪[$\frac{3}{4}$,+∞)

分析 由根式内部的代数式大于等于0,对数式的真数大于0联立不等式组得答案.

解答 解:由$\left\{\begin{array}{l}{2x+1≥0}\\{3-4x>0}\end{array}\right.$,解得-$\frac{1}{2}≤x<\frac{3}{4}$.
∴函数y=$\sqrt{2x+1}$+lg(3-4x)的定义域为[-$\frac{1}{2}$,$\frac{3}{4}$).
故选:B.

点评 本题考查函数的定义域及其求法,考查了不等式组的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.给出下列四种说法:
(1)函数y=ax(a>0且a≠1)与函数$y={log_a}{a^x}(a>0$且a≠1)的定义域相同;
(2)函数y=x2与函数y=3x的值域相同; 
(3)函数$y=\frac{1}{2}+\frac{1}{{{2^x}-1}}$与函数$y=\frac{{{{(1+{2^x})}^2}}}{{x•{2^x}}}$均是定义在(-∞,0)∪(0,+∞)上的奇函数; 
(4)函数y=(x-1)2与函数y=2x-1在(0,+∞)上都是奇函数.
其中正确说法的序号是(  )
A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的通项公式an=n+1
(1)求证:sin$\frac{π}{a_n}≥\frac{2}{a_n}$;
(2)设数列$\left\{{sin\frac{π}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和为Sn,求证:$\frac{1}{3}<{S_n}<\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,三角形的三个内角A、B、C满足2sinAcosB=sinC,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\sqrt{x}$-x的单调递减区间为(  )
A.(0,$\frac{1}{2}$)B.(0,$\frac{1}{4}$)∪$\frac{1}{2}$,+∞)C.($\frac{1}{4}$,+∞)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若sin(π+α)+sin(-α)=-m,则sin(3π+α)+2sin(2π-α)等于(  )
A.-$\frac{2}{3}$mB.-$\frac{3}{2}$mC.$\frac{2}{3}$mD.$\frac{3}{2}$m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数$f(x)=\frac{{2\sqrt{x}}}{x+1}$的最大值为(  )
A.2B.1C.$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数在区间(-1,1)上单调递减的是(  )
A.y=cosxB.y=$\frac{1}{x-0.5}$C.y=-ln(x+1)D.y=x+$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设y=f(x2),则y″=2f′(x2)+4x2f″(x2).

查看答案和解析>>

同步练习册答案