精英家教网 > 高中数学 > 题目详情
已知f(x)=(x-1)(x-2)(x-3)…(x-101),则f′(1)=
 
考点:导数的运算
专题:导数的综合应用
分析:f′(x)=(x-2)(x-3)…(x-101)+(x-1)(x-3)…(x-101)+…+(x-1)(x-2)…(x-100),把x=1代入即可得出.
解答: 解:f′(x)=(x-2)(x-3)…(x-101)+(x-1)(x-3)…(x-101)+…+(x-1)(x-2)…(x-100),
∴f′(1)=(1-2)(1-3)…(1-101)=100!,
故答案为:100!.
点评:本题考查了乘法的导数运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图(1),矩形ABCD中,M、N分别为边AD、BC的中点,E、F分别为边AB、CD上的定点且满足EB=FC,现沿MN,EN,FN折叠使点B、C重合且与E、F共线,如图(2).若此时二面角A-MN-D的大小为60°,则折叠后EN与平面MNFD所成角的正弦值是(  )
A、
10
2
B、
10
5
C、
15
5
D、
15
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:函数f(x)=x2-ax+3在(-∞,
1
2
]上是减函数,命题q:不等式(a-2)x2-2(a-2)-4<0对一切x∈R都成立.若“p或q”为真命题,且“p且q”为假命题,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

试把sin(α+β)cosα-
1
2
[sin(2α+β)-sinβ]化简成不含角α的三角函数式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2
(1)设bn=(-1)n-1anan+1,求数列{bn}的前n项和Tn
(2)是否存在以a1为首项,公比为q(0<q<5,q∈N*)的等比数列{ank},k∈N*,使得数列{ank}中每一项都是数列{an}中不同的项,若存在,求出所有满足条件的数列{nk}的通项公式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:log 
1
2
x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

若“x∈A“是“x∈B“的充分条件,但不是必要条件,则A与B的关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若对任意实数x,不等式|x+3|+|x-1|≥a2-3a恒成立,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x),当x≥0时,f(x)=x2,则f(-2)=
 
,则不等式f(1-2x)<f(3)的解集是
 

查看答案和解析>>

同步练习册答案