精英家教网 > 高中数学 > 题目详情
18.若函数$f(x)=lg\frac{ax+1}{1-2x}$是奇函数,则实数a=2.

分析 利用奇函数的定义,即可求出结论.

解答 解:∵f(-x)=-f(x),∴$lg\frac{1-ax}{1+2x}=-lg\frac{ax+1}{1-2x}$,得$lg\frac{1-ax}{1+2x}+lg\frac{ax+1}{1-2x}=0$.
∴1-a2x2=1-4x2,∴a2=4,a=±2.
当a=-2时,$f(x)=lg1=0({x≠\frac{1}{2}})$,不合题意,∴a=2.
故答案为2.

点评 本题考查奇函数的定义,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若x,y满足$\left\{\begin{array}{l}2x-y≤0\\ x+y≤3\\ x≥0\end{array}\right.$则y-x的最大值为(  )
A.0B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.射线OA绕端点O逆时针旋转120°到达OB的位置,再顺时针旋转270°到达OC的位置,则∠AOC=(  )
A.150°B.-150°C.390°D.-390°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设x∈R,则“x>-1”是“x3>-1”的(  )
A.充分不必要条件B.必要不充分条件
C.既不充分也不必要条件D.充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}-ax-5,(x≤1)\\ \frac{a}{x}(x>1)\end{array}$是R上的增函数,则a的取值范围是(  )
A.{a|-3≤a<0}B.{a|a≤-2}C.{a|a<0}D.{a|-3≤a≤-2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式2x2-ax+1>0的解集为R,则实数a的取值范围是-2$\sqrt{2}$<a<2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题中的假命题是(  )
A.?x∈R,log2x=0B.?x∈R,cosx=1C.?x∈R,x2>0D.?x∈R,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow a=({1,1})$,向量$\overrightarrow a$,$\overrightarrow b$的夹角为$\frac{π}{3}$,$\overrightarrow a•\overrightarrow b=\sqrt{2}$,则$|{\overrightarrow b}|$等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.三条两两相交的直线可确定1或3个平面.

查看答案和解析>>

同步练习册答案