精英家教网 > 高中数学 > 题目详情

【题目】已知.

1)讨论的单调区间;

2)当时,证明:.

【答案】1上单调递减;在上单调递增.2)见解析

【解析】

1)先求函数的定义域,再进行求导得,对分成三种情况讨论,求得单调区间;

2)要证由,等价于证明,再对两种情况讨论;证明当时,不等式成立,可先利用放缩法将参数消去,转化成证明不等式成立,再利用构造函数,利用导数证明其最小值大于0即可。

1的定义域为

时,由,得

,得

所以上单调递减,在上单调递增;

时,由,得

,得

所以上单调递减,在上单调递增;

时,由,得上单调递增;

时,由,得;由,得

所以上单调递减;在上单调递增.

2)由,得

①当时,,不等式显然成立;

②当时,,由,得

所以只需证:

即证,令

所以上为增函数,

因为

所以存在

所以上单调递减,在上单调递增,

又因为

时,上单调递减,

时,上单调递增,

所以

所以

所以原命题得证

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面的中点为.

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程,持有旅游年卡一年内可不限次畅游全市19家签约景区.为了解市民每年旅游消费支出情况单位:百元,相关部门对已游览某签约景区的游客进行随机问卷调查,并把得到的数据列成如表所示的频数分布表:

组别

频数

10

390

400

188

12

求所得样本的中位数精确到百元

根据样本数据,可近似地认为市民的旅游费用支出服从正态分布,若该市总人口为750万人,试估计有多少市民每年旅游费用支出在7500元以上;

若年旅游消费支出在百元以上的游客一年内会继续来该景点游玩现从游客中随机抽取3人,一年内继续来该景点游玩记2分,不来该景点游玩记1分,将上述调查所得的频率视为概率,且游客之间的选择意愿相互独立,记总得分为随机变量X,求X的分布列与数学期望.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线为其焦点,为其准线,过任作一条直线交抛物线于两点,分别为上的射影,的中点,给出下列命题:

1;(2;(3

4的交点的轴上;(5交于原点.

其中真命题的序号为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在正常数,使得对任意的,都有成立,我们称函数同比不减函数

1)求证:对任意正常数都不是同比不减函数

2)若函数同比不减函数,求的取值范围;

3)是否存在正常数,使得函数同比不减函数,若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为信号源点,是三个居民区,已知都在的正东方向上,的北偏西45°方向上,,现要经过点铺设一条总光缆直线在直线的上方),并从分别铺设三条最短分支光缆连接到总光缆,假设铺设每条分支光缆的费用与其长度的平方成正比,比例系数为1/,设,(),铺设三条分支光缆的总费用为(元).

1)求关于的函数表达式;

2)求的最小值及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥D-ABC中,EF分别为DBAB的中点,且.

1)求证:平面平面ABC

2)求二面角D-CE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是由两个全等的菱形组成的空间图形,,∠BAF=∠ECD60°.

1)求证:

2)如果二面角BEFD的平面角为60°,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过左焦点的直线与椭圆交于两点,且线段的中点为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设上一个动点,过点与椭圆只有一个公共点的直线为,过点垂直的直线为,求证:的交点在定直线上,并求出该定直线的方程.

查看答案和解析>>

同步练习册答案