精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(log2a)+f)≤2f(1),则a的取值范围是(  )

A. B. C. D.

【答案】A

【解析】

由偶函数的性质将f(log2a)+f≤2f1化为:f(log2a)≤f(1),再由f(x)的单调性列出不等式,根据对数函数的性质求出a的取值范围

因为函数f(x)是定义在R上的偶函数,
所以f( )=f(-log2a)=f(log2a),
f(log2a)+f( )≤2f(1):f(log2a)≤f(1),
因为函数f(x)在区间[0,+∞)上单调递增,
所以|log2a|≤1,解得≤a≤2,
a的取值范围是[,2],
故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知五面体,其中内接于圆是圆的直径,四边形为平行四边形,且平面

(1)证明:平面平面

(2)若,且二面角所成角的余弦值为,试求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示.

x

﹣1

0

4

5

f(x)

1

2

2

1

下列关于函数f(x)的命题:
①函数y=f(x)是周期函数;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为5;
④当1<a<2时,函数y=f(x)﹣a有4个零点.
其中所有真命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为纪念重庆黑山谷晋升国家5A级景区五周年,特发行黑山谷纪念邮票,从2017年11月1日起开始上市.通过市场调查,得到该纪念邮票在一周内每1张的市场价y(单位:元)与上市时间x(单位:天)的数据如下:

上市时间x天

1

2

6

市场价y元

5

2

10

(Ⅰ)分析上表数据,说明黑山谷纪念邮票的市场价y(单位:元)与上市时间x(单位:天)的变化关系,并判断y与x满足下列哪种函数关系,①一次函数;②二次函数;③对数函数,并求出函数的解析式;

(Ⅱ)利用你选取的函数,求黑山谷纪念邮票市场价最低时的上市天数及最低的价格.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=-x2+2mx+7.

(Ⅰ)已知函数y=(x)在区间[1,3]上的最小值为4,求m的值;

(Ⅱ)若不等式fx)≤x2-6x+11在区间[1,2]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为 的椭圆 =1(a>b>0)的一个焦点为F,过F且与x轴垂直的直线与椭圆交于A、B两点,|AB|=
(1)求此椭圆的方程;
(2)已知直线y=kx+2与椭圆交于C、D两点,若以线段CD为直径的圆过点E(﹣1,0),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一年级有甲,乙,丙三位学生,他们前三次月考的物理成绩如表:

第一次月考物理成绩

第二次月考物理成绩

第三次月考物理成绩

学生甲

80

85

90

学生乙

81

83

85

学生丙

90

86

82

则下列结论正确的是(  )

A. 甲,乙,丙第三次月考物理成绩的平均数为86

B. 在这三次月考物理成绩中,甲的成绩平均分最高

C. 在这三次月考物理成绩中,乙的成绩最稳定

D. 在这三次月考物理成绩中,丙的成绩方差最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知l1 , l2 , l3 , …ln为平面内相邻两直线距离为1的一组平行线,点O到l1的距离为2,A,B是l1的上的不同两点,点P1 , P2 , P3 , …Pn分别在直线l1 , l2 , l3 , …ln上.若 =xn +yn (n∈N*),则x1+x2+…+x5+y1+y2+…+y5的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)上一点与它的左、右两个焦点F1 , F2的距离之和为2 ,且它的离心率与双曲线x2﹣y2=2的离心率互为倒数.
(1)求椭圆的方程;
(2)如图,点A为椭圆上一动点(非长轴端点),AF1的延长线与椭圆交于点B,AO的延长线与椭圆交于点C.
①当直线AB的斜率存在时,求证:直线AB与BC的斜率之积为定值;
②求△ABC面积的最大值,并求此时直线AB的方程.

查看答案和解析>>

同步练习册答案