精英家教网 > 高中数学 > 题目详情
已知,且
(1)求函数的单调增区间;
(2)三角形ABC中,边分别为角的对边,若,B=,且, 求三角形ABC的边的值.
(1)单调增区间为;(2).

试题分析:(1)首先由向量的数量积及坐标运算得函数的解析式,利用正弦函数的单调区间即可求得该函数的单调区间;(2)注意直线的斜率为4,那么要证明无论为何值,直线与函数的图象不相切,就只需通过求导说明函数的导数值不可能等于4即可.
(2)由可求得角A.这样本题就是典型的已知两角及一边的解三角形问题,用正弦定理即可求得的值.
试题解析:(1)∵,且
              1分

                       3分
,解之得      4分
又∵     ∴
故函数 的单调增区间为       6分
(2)由①问可知
,即                8分
∵A是三角形ABC的内角  ∴
又∵,B=    ∴由正弦定理有,即有   12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在△ABC中,角所对的边分别为
(Ⅰ)求的值
(Ⅱ)求三角函数式的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角坐标系xOy中,锐角△ABC内接于圆已知BC平行于x轴,AB所在直线方程为,记角A,B,C所对的边分别是a,b,c.

(1)若的值;
(2)若的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知点,点为坐标原点,点在第二象限,且,记.

(1)求的值;(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=2cos2x+sin2x+a(a∈R).
(1)求函数f(x)的最小正周期;
(2)当x∈[0,]时,f(x)的最大值为2,求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
(1)设,写出函数的最小正周期;并求函数的单调区间;
(2)若,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的离心率,A,B是椭圆的左、右顶点,P是椭圆上不同于A,B的一点,直线PA,PB倾斜角分别为,则         

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=-ax(a∈R)既有最大值又有最小值,则f(x)值域为_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是单位向量且,则的最大值为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案