【题目】如图1,已知平面四边形中,.点在上,且满足.沿将折起,使得平面平面,如图2.
(1)若点是的中点,证明:平面;
(2)在(1)的条件下,求三棱锥的体积.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是平行四边形,平面,是棱上的一点,满足平面.
(Ⅰ)证明:;
(Ⅱ)设,,若为棱上一点,使得直线与平面所成角的大小为30°,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)若的值域为,求的值;
(Ⅱ)巳,是否存在这祥的实数,使函数在区间内有且只有一个零点.若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列,其前项和为,满足,,其中,,,.
⑴若,,(),求证:数列是等比数列;
⑵若数列是等比数列,求,的值;
⑶若,且,求证:数列是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了检验学习情况,某培训机构于近期举办一场竞赛活动,分别从甲、乙两班各抽取10名学员的成绩进行统计分析,其成绩的茎叶图如图所示(单位:分),假设成绩不低于90分者命名为“优秀学员”.
(1)分别求甲、乙两班学员成绩的平均分(结果保留一位小数);
(2)从甲班4名优秀学员中抽取两人,从乙班2名80分以下的学员中抽取一人,求三人平均分不低于90分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为(为参数),直线与曲线分别交于,两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若点的极坐标为,,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com