精英家教网 > 高中数学 > 题目详情
(本小题满分13分)如图,正三棱柱中,D是BC的中点,

(Ⅰ)求证:;(Ⅱ)求证:;(Ⅲ)求三棱锥的体积.
(1)根据三棱柱中BB1⊥平面ABC,结合AD⊥BD,根据三垂线定理得,AD⊥B1D,得到证明。
(2)要证明线面平行,关键是对于DE∥A1C.的证明。
(3)

试题分析:(Ⅰ)证明:∵ABC—A1B1C1是正三棱柱,∴BB1⊥平面ABC,∴BD是B1D在平面ABC上的射影在正△ABC中,∵D是BC的中点,∴AD⊥BD,根据三垂线定理得,AD⊥B1D
(Ⅱ)解:连接A1B,设A1B∩AB1 = E,连接DE.∵AA1=AB ∴四边形A1ABB1是正方形,∴E是A1B的中点,又D是BC的中点,∴DE∥A1C. ………………………… 7分∵DE平面AB1D,A1C平面AB1D,∴A1C∥平面AB1D. ……………………9分 
(Ⅲ)  ……13分
点评:解决该试题的关键是能利用线面平行的判定定理,以及面面垂直的性质定理来证明线线垂直,同时结合体积公式计算,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

△ABC两直角边分别为3、4,PO⊥面ABC,O是△ABC的内心,PO=,则点P 到△ABC的斜边AB的距离是(    )   
                                
A.B.C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥的底面为等腰梯形,,,垂足为是四棱锥的高。

(Ⅰ)证明:平面 平面
(Ⅱ)若,60°,求四棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱锥中,是等腰直角三角形,中点. 则与平面所成的角等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在三棱锥中,是边长为4的正三角形,分别是的中点;

(1)证明:平面平面
(2)求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在四棱锥中,平面平面是等边三角形,已知

(Ⅰ)设上的一点,证明:平面平面
(Ⅱ)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四面体中,,且E、F分别是AB、BD的中点,

求证:(1)直线EF//面ACD
(2)面EFC⊥面BCD

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两条直线,为两个平面,下列四个命题中,正确的命题是(   )
A.若所成的角相等,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,平面平面,是正三角形,已知

(1) 设上的一点,求证:平面平面;
(2) 求四棱锥的体积.

查看答案和解析>>

同步练习册答案