精英家教网 > 高中数学 > 题目详情
2.已知a>0,函数f(x)=eaxsinx(x∈[0,+∞)).记xn为f(x)的从小到大的第n(n∈N*)个极值点,则数列{f(xn)}是(  )
A.等差数列,公差为eaxB.等差数列,公差为-eax
C.等比数列,公比为eaxD.等比数列,公比为-eax

分析 求出导数,运用两角和的正弦公式化简,求出导数为0的根,讨论根附近的导数的符号相反,即可得到极值点,求得极值,运用等比数列的定义即可得证;

解答 解::f′(x)=eax(asinx+cosx)=$\sqrt{{a}^{2}+1}$•eaxsin(x+φ),
tanφ=$\frac{1}{a}$,0<φ<$\frac{π}{2}$,
令f′(x)=0,由x≥0,x+φ=mπ,即x=mπ-φ,m∈N*
对k∈N,若(2k+1)π<x+φ<(2k+2)π,即(2k+1)π-φ<x<(2k+2)π-φ,
则f′(x)<0,因此在((m-1)π-φ,mπ-φ)和(mπ-φ,(m+1)π-φ)上f′(x)符号总相反.
于是当x=nπ-φ,n∈N*,f(x)取得极值,所以xn=nπ-φ,n∈N*
此时f(xn)=ea(nπ-φ)sin(nπ-φ)=(-1)n+1ea(nπ-φ)sinφ,
易知f(xn)≠0,而$\frac{{f(x}_{n+1})}{{f(x}_{n})}$=$\frac{{(-1)}^{n+2}{e}^{a((n+1)π-φ)}sinφ}{{(-1)}^{n+1}{e}^{a(nπ-φ)}sinφ}$=-e是常数,
故数列{f(xn)}是首项为f(x1)=ea(π-φ)sinφ,公比为-e的等比数列;
故选:D.

点评 本题考查导数的运用:求极值和单调区间,主要考查三角函数的导数和求值,同时考查等比数列的定义和通项公式的运用,考查不等式恒成立问题的证明,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设Sn是等比数列{an}的前n项和,an>0,若S6-2S3=5,则S9-S6的最小值为20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若α为锐角,且sin(α-$\frac{π}{4}$)=$\frac{1}{4}$,则sinα的值为$\frac{\sqrt{2}+\sqrt{30}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{{x}^{2}}-\frac{1}{x},x≥1}\\{2x+2,x<1}\end{array}\right.$,则f(f(0))=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若两条平行线l1、l2的方程分别是3x+4y+m=0,3mx+8y-4=0,记l1、l2之间的距离为d,则m,d分别为2;$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,已知A=30°,B=120°,b=5,解三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若复数z满足iz=2+4i,则z的虚部等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=$\frac{{e}^{x}}{{x}^{2}}$+k($\frac{2}{x}$+lnx)(k为常数).
(1)当k=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当k≥0时,求函数f(x)的单调区间;
(3)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在正三棱柱ABC-A1B1C1中,已知它的底面边长为10,高为20.
(1)求正三棱柱ABC-A1B1C1的表面积与体积;
(2)若P、Q分别是BC、CC1的中点,求异面直线PQ与AC所成角的大小(结果用反三角函数表示).

查看答案和解析>>

同步练习册答案