【题目】在平面直角坐标系xOy中,已知抛物线x2=2py(p>0)上的点M(m,1)到焦点F的距离为2,
(1)求抛物线的方程;
(2)如图,点E是抛物线上异于原点的点,抛物线在点E处的切线与x轴相交于点P,直线PF与抛物线相交于A,B两点,求△EAB面积的最小值.
【答案】
(1)解:抛物线x2=2py(p>0)的准线方程为 ,
因为M(m,1),由抛物线定义,知 ,
所以 ,即p=2,
所以抛物线的方程为x2=4y
(2)解:因为 ,所以 .
设点 ,则抛物线在点E处的切线方程为 .
令y=0,则 ,即点 .
因为 ,F(0,1),所以直线PF的方程为 ,即2x+ty﹣t=0.
则点 到直线PF的距离为 .
联立方程 消元,得t2y2﹣(2t2+16)y+t2=0.
因为△=(2t2+16)2﹣4t4=64(t2+4)>0,
所以 , ,
所以 .
所以△EAB的面积为 .
不妨设 (x>0),则 .
因为 时,g'(x)<0,所以g(x)在 上单调递减; 上,g'(x)>0,所以g(x)在 上单调递增.
所以当 时, .
所以△EAB的面积的最小值为 .
【解析】(1)求出抛物线x2=2py(p>0)的准线方程为 ,由抛物线定义,得到p=2,即可求解抛物线的方程.(2)求出函数的 .设点 ,得到抛物线在点E处的切线方程为 .求出 .推出直线PF的方程,点 到直线PF的距离,联立 求出AB,表示出△EAB的面积,构造函数,通过函数的导数利用单调性求解最值即可.
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量 (吨)与相应的生产能耗 (吨标准煤)的几组对照数据
(1)求
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据1求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(附: ,,,,其中,为样本平均值)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂家具车间造、型两类桌子,每张桌子需木工和漆工梁道工序完成.已知木工做一张、型型桌子分别需要1小时和2小时,漆工油漆一张、型型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张、型型桌子分别获利润2千元和3千元.
(1)列出满足生产条件的数学关系式,并画出可行域;
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将圆的一组等分点分别涂上红色或蓝色,从任意一点开始,按逆时针方向依次记录个点的颜色,称为该圆的一个“阶色序”,当且仅当两个“阶色序”对应位置上的颜色至少有一个不相同时,称为不同的“阶色序”.若某圆的任意两个“阶色序”均不相同,则称该圆为“阶魅力圆”.“4阶魅力圆”中最多可有的等分点个数为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以点为圆心的圆被直线:截得的弦长为.
(1)求圆的标准方程;
(2)求过与圆相切的直线方程;
(3)若是轴的动点,,分别切圆于,两点.试问:直线是否恒过定点?若是,求出恒过点坐标;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣a|+a.
(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},求实数a的值;
(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若关于x的不等式xex﹣2ax+a<0的非空解集中无整数解,则实数a的取值范围是( )
A.[ , )
B.[ , )
C.[ ,e]
D.[ ,e]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com