精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:

甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖·

乙商场:从装有2个白球、2个蓝球和2个红球的盒子中一次性摸出1球(这些球除颜色外完全相同),它是红球的概率是,若从盒子中一次性摸出2球,且摸到的是2个相同颜色的球,即为中奖.

(Ⅰ)求实数的值;

(Ⅱ)试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.

【答案】(Ⅰ);(Ⅱ)顾客在甲商场中奖的可能性大.

【解析】试题分析:(Ⅰ)根据随机事件的概率公式,即可求出的值;(Ⅱ)设顾客去甲商场转动圆盘,指针指向阴影部分为事件,利用几何概型求出顾客去甲商场中奖的概率;设顾客去乙商场一次摸出两个相同颜色的球为事件,利用等可能事件概率计算公式求出顾客去乙商场中奖的概率,由此能求出顾客在甲商场中奖的可能性大.

试题解析:(Ⅰ)根据随机事件的概率公式, ,解得.

(Ⅱ)设顾客去甲商场转动圆盘,指针指向阴影部分为事件,试验的全部结果构成的区域为圆盘,

面积为为圆盘的半径),阴影区域的面积为.

故由几何概型,得.

设顾客去乙商场一次摸出两个相同颜色的球为事件,记2个白球为白1,白2;2个红球为红1、红2;2个蓝球为蓝1、蓝2.

则从盒子中一次性摸出2球,一切可能的结果有(白1、白2),(白1、红1)、(白1、红2),(白1、蓝1),(白1、蓝2);(白2、红1),(白2、红2),(白2、蓝1),(白2、蓝2);(红1、蓝1),(红1、蓝2),(红2、蓝1),(红2、蓝2);(蓝1、蓝2)等共15种;

其中摸到的是2个相同颜色的球有(白1、白2),(红1、红2),(蓝1、蓝2)等共3种;

故由古典概型,得.

因为,所以顾客在甲商场中奖的可能性大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知Sn是正项数列{an}的前n项和,且Sn= an2+ an
(1)求数列{an}的通项公式;
(2)若an=2nbn , 求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自选题:已知曲线C1 (θ为参数),曲线C2 (t为参数).
(1)指出C1 , C2各是什么曲线,并说明C1与C2公共点的个数;
(2)若把C1 , C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′,C2′.写出C1′,C2′的参数方程.C1′与C2′公共点的个数和C与C2公共点的个数是否相同?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 是坐标原点, 分别为其左右焦点, , 是椭圆上一点, 的最大值为

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆交于两点,且

(i)求证: 为定值;

(ii)求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为得到函数y=sin(2x+ )的图象,只需将函数y=sin2x的图象(
A.向右平移 长度单位
B.向左平移 个长度单位
C.向右平移个 长度单位
D.向左平移 长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下图所示

I请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;

为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?

2的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求:第4组至少有一名学生被考官A面试的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的二次函数

1)设集合,分别从集合中随机取一个数作为,求函数在区间上是增函数的概率;

2)设点是区域内的随机点, 求函数在区间上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品每件成本为6元,每件售价为元(),年销售万件,若已知成正比,且售价为10元时,年销量为28万件.

(1)求年销售利润关于售价的函数关系式.

(2)求售价为多少时,年利润最大,并求出最大年利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车厂生产三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.

轿车

轿车

轿车

舒适型

100

150

标准型

300

450

600

(1)求的值;

(2)用分层抽样的方法在类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取

2辆,求至少有1辆舒适型轿车的概率;

(3)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:. 把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对 值不超过的概率.

查看答案和解析>>

同步练习册答案