精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)ax(ab∈Z),曲线yf(x)在点(2f(2))处的切线方

程为y3.

(1)f(x)的解析式;

(2)证明:曲线yf(x)上任一点的切线与直线x1和直线yx所围三角形的面积为定值,

并求出此定值.

【答案】(1) f(x)x(2)证明见解析

【解析】

(1)解 f′(x)a

解得

因为abZ,故f(x)x.

(2)在曲线上任取一点,由f′(x0)1知,过此点的切线

方程为y[1] (xx0)

x1,得y 切线与直线x1的交点为 (1,)

yx,得y2x01,切线与直线yx的交点为(2x01,2x01)

直线x1与直线yx的交点为(1,1),从而所围三角形的面积为

|2x011|2.

所以,所围三角形的面积为定值2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数, .

(1)试讨论函数的单调性;

(2)当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】到2020年,我国将全面建立起新的高考制度,新高考采用模式,其中语文、数学、英语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣、爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门(6选3)参加考试,满分各100分.为了顺利迎接新高考改革,某学校采用分层抽样的方法从高一年级1000名(其中男生550名,女生450名)学生中抽取了名学生进行调查.

(1)已知抽取的名学生中有女生45名,求的值及抽取的男生的人数.

(2)该校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目,且只能选择一个科目),得到如下列联表.

选择“物理”

选择“地理”

总计

男生

10

女生

25

总计

(i)请将列联表补充完整,并判断是否有以上的把握认为选择科目与性别有关系.

(ii)在抽取的选择“地理”的学生中按性别分层抽样抽取6名,再从这6名学生中抽取2名,求这2名中至少有1名男生的概率.

附:,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中药种植基地有两处种植区的药材需在下周一、下周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘.由于下雨会影响药材品质,基地收益如下表所示:

周一

无雨

无雨

有雨

有雨

周二

无雨

有雨

无雨

有雨

收益

万元

万元

万元

万元

若基地额外聘请工人,可在周一当天完成全部采摘任务.无雨时收益为万元;有雨时,收益为万元.额外聘请工人的成本为万元.

已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为万元的概率为.

(Ⅰ)若不额外聘请工人,写出基地收益的分布列及基地的预期收益;

(Ⅱ)该基地是否应该外聘工人,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设递增数列共有项,定义集合,将集合中的数按从小到大排列得到数列

1)若数列共有4项,分别为,写出数列的各项的值;

2)设是公比为2的等比数列,且,若数列的所有项的和为4088,求的值;

3)若,求证:为等差数列的充要条件是数列恰有7项;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,已知对任意,都有,且成立.令,其中为常数.

1)当时,求函数的所有零点;

2)当时,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,试讨论函数的单调性;

(Ⅱ)设,当对任意的恒成立时,求函数的最大值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出如下四个命题:

的充分而不必要条件;

②命题,则函数有一个零点的逆命题为真命题;

③若的必要条件,则的充分条件;

④在中,的既不充分也不必要条件.

其中正确的命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为若存在闭区间使得函数满足

上是单调函数 上的值域是,则称区间是函数 和谐区间

下列结论错误的是

A.函数 存在 和谐区间

B.函数 存在 和谐区间

C.函数 存在 和谐区间

D.函数 存在 和谐区间

查看答案和解析>>

同步练习册答案