精英家教网 > 高中数学 > 题目详情

【题目】国庆节来临,某公园为了丰富广大人民群众的业余生活,特地以我们都是中国人为主题举行猜谜语竞赛.现有两类谜语:一类叫事物谜,就是我们常说的谜语;另一类叫文义谜,也就是我们常说的灯谜,共8道题,其中事物谜4道题,文义谜4道题,孙同学从中任取3道题解答.

1)求孙同学至少取到2道文义谜题的概率;

2)如果孙同学答对每道事物谜题的概率都是,答对每道文义谜题的概率都是,且各题答对与否相互独立,已知孙同学恰好选中2道事物谜题,1道文义谜题,用表示孙同学答对题的个数,求随机变量的分布列和数学期望.

【答案】1;(2)答案见解析,.

【解析】

1)由题意可知孙同学至少取到2道文义谜题的有两种情况:一是孙同学取到2道文义谜题,另一种是孙同学取到3道文义谜题,这两种情况是互斥的,根据互斥事件概率的求法求解即可;

2)由于孙同学从中任取3道题解答,用表示孙同学答对题的个数,所以可能的取值有0,1,2,3四种情况,分别求四种情况下的概率,即可得到分布列,进而可求出期望.

解:(1)设孙同学至少取到2道文义谜题为事件.

孙同学取到2道文义谜题共有种取法;

孙同学取到3道文义谜题共有种取法,

.

2)易知的所有可能取值为0123.

.

故随机变量的分布列为

0

1

2

3

故随机变量的数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是(

A.若两个随机变量的线性相关性越强,则相关系数的值越接近于1

B.若正态分布,则

C.把某中学的高三年级560名学生编号:1560,再从编号为11010名学生中随机抽取1名学生,其编号为,然后抽取编号为,…的学生,这样的抽样方法是分层抽样

D.若一组数据034的平均数是2,则该组数据的方差是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为.经过点且倾斜角为的直线与椭圆交于两点(其中点轴上方),的周长为.

1)求椭圆的标准方程;

2)如图,把平面沿轴折起来,使轴正半轴和轴确定的半平面,与轴负半轴和轴所确定的半平面互相垂直,若折叠后的周长为,求的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】多面体中,△为等边三角形,△为等腰直角三角形,平面平面.

1)求证:

2)若,求平面与平面所成的较小的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,点EAB上,AE2EB2,且DEAB.DE为折痕把△ADE折起,使点A到达点F的位置,且∠FEB60°.

1)求证:平面BFC⊥平面BCDE

2)若直线DF与平面BCDE所成角的正切值为,求二面角EDFC的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面,已知,点是棱的中点.

1)求证:平面

2)求二面角的余弦值;

3)在棱上是否存在一点,使得与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,点为棱的中点.

1)证明:

2)求直线与平面所成角的正弦值;

3)若为棱上一点,满足,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,过曲线外的一点(其中为锐角)作平行于的直线与曲线分别交于

(Ⅰ) 写出曲线和直线的普通方程(以极点为原点,极轴为 轴的正半轴建系)

)若成等比数列,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(是自然对数的底数).

1)讨论的单调性;

2)当时,,求的取值范围.

查看答案和解析>>

同步练习册答案