精英家教网 > 高中数学 > 题目详情
已知直线l:y=2x-4被抛物线C:y2=2px(p>0)截得的弦长|AB|=3
5

(Ⅰ)求抛物线C的方程;
(Ⅱ)若抛物线C的焦点为F,求三角形ABF的面积.
分析:(1)把直线方程与抛物线方程联立得到根与系数的关系,利用弦长公式即可得出p;
(2)利用点到直线的距离公式即可得出.
解答:解:(1)设A(x1,y1),B(x2,y2
y=2x-4
y2=2px
⇒2x2-(8+p)x+8=0

|AB|=3
5

(3
5
)2=(1+22)[(
8+p
2
)
2
-4×4]

∴p=2
故抛物线C的方程为:y2=4x.
(2)由(1)知F(1,0),
∴点F到AB的距离d=
2
5

S△ABF=
1
2
d|AB|=
1
2
×
2
5
×3
5
=3.
点评:熟练掌握直线与抛物线相交问题转化为直线方程与抛物线方程联立得到根与系数的关系、弦长公式、点到直线的距离公式等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:y=2x-2,圆C:x2+y2+2x+4y+1=0,请判断直线l与圆C的位置关系,若相交,则求直线l被圆C所截的线段长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=2x+1和圆C:x2+y2=4,
(1)试判断直线和圆的位置关系.
(2)求过点P(-1,2)且与圆C相切的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=2x+m和椭圆C:
x2
4
+y2=1

(1)m为何值时,l和C相交、相切、相离;
(2)m为何值时,l被C所截线段长为
20
17

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
12
x2+lnx
(1)求f(x)在区间[1,e]上的最大值与最小值;
(2)已知直线l:y=2x+a与函数f(x)的图象相切,求切点的坐标及a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=2x-
3
与椭圆C:
x2
a2
+y2=1  (a>1)
交于P,Q两点.
(1)设PQ中点M(x0,y0),求证:x0 <
3
2

(2)椭圆C的右顶点为A,且A在以PQ为直径的圆上,求△OPQ的面积(O为坐标原点).

查看答案和解析>>

同步练习册答案