精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π)的图象如图
(1)求f(x)的解析式;
(2)求该函数的单调递增区间;
(3)将f(x)上的横坐标缩短到原来的$\frac{1}{3}$,纵坐标不变,然后将所得到的函数图象沿x轴向右平移$\frac{π}{3}$个单位,得到函数y=g(x)的图象
①试写出y=g(x)的解析式;②试做出y=g(x)在x∈[0,2π]上的函数图象.

分析 (1)由图知A,T,从而可求得ω;又函数y=2sin($\frac{1}{3}$x+φ)经过(0,1),可求得φ,从而可得函数的表达式.
(2)由2kπ-$\frac{π}{2}$≤$\frac{1}{3}$x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z解得函数的单调递增区间.
(3)用五点法即可作函数在一个周期上的简图.

解答 解:(1)由图知,A=2,$\frac{1}{2}$T=x0+3π-x0=3π,ω>0,
∴T=$\frac{2π}{ω}$=6π,解得ω=$\frac{1}{3}$;
又函数y=2sin($\frac{1}{3}$x+φ)经过(0,1),
∴$\frac{1}{3}$×0+φ=$\frac{π}{6}$+2kπ,k∈Z.
∴φ=$\frac{π}{6}$.
∴y=2sin($\frac{1}{3}$x+$\frac{π}{6}$).
故f(x)的解析式为:y=2sin($\frac{1}{3}$x+$\frac{π}{6}$).
(2)由2kπ-$\frac{π}{2}$≤$\frac{1}{3}$x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z解得函数的单调递增区间为:[6kπ-2π,6kπ+π],k∈Z.
(3)①把y=2sin($\frac{1}{3}$x+$\frac{π}{6}$)的图象上所有点的纵坐标不变,横坐标缩短为原来的$\frac{1}{3}$,可得y=2sin(x+$\frac{π}{6}$)的图象;
再将图象沿x轴向右平移$\frac{π}{3}$个单位,可得函数y=g(x)=2sin(x-$\frac{π}{3}$+$\frac{π}{6}$)=2sin(x-$\frac{π}{6}$)的图象,
②列表:

x0$\frac{π}{6}$$\frac{2π}{3}$$\frac{7π}{6}$$\frac{5π}{3}$$\frac{13π}{6}$
x-$\frac{π}{6}$-$\frac{π}{6}$0$\frac{π}{2}$π$\frac{3π}{2}$
2sin(x-$\frac{π}{6}$)-1020-20
描点得图象y=g(x)在x∈[0,2π]上的函数图象如下:

点评 本题考查五点法作函数y=Asin(ωx+φ)的图象,函数y=Asin(ωx+φ)的图象变换,由y=Asin(ωx+φ)的部分图象确定其解析式,求得φ是关键,也是难点,考查识图与运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知直线l过点P(-1,2),且点 A(-4,1),B(2,5)到直线l的距离相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)是定义在R上的奇函数,当x<0时,f(x)=-1-log2(-x).
(1)求f(x)的解析式;
(2)设g(x)=2f(2x+3)-f(2x+1),若g(x)≥m恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知p={x|x2-3x-18≤0},S={x||x-2|≤m-1}
(1)若(P∪S)⊆P,求实数m的取值范围;
 (2)是否存在实数m,使得“x∈P”是“x∈S”的充要条件,若存在,求出m的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,已知$\frac{cosA}{cosB}$=$\frac{b}{a}$=$\frac{2014}{2015}$,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,底面正方形ABCD为边长为2,PA⊥底面ABCD,E为BC的中点,PC与平面PAD所成的角为arctan$\frac{{\sqrt{2}}}{2}$.
(1)求异面直线AE与PD所成角的大小(结果用反三角函数表示);
(2)求点B到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=-3sin(-2x+$\frac{π}{3}$)(x≥0)的初相是-$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知O、A、B、C四点均在半径为$\frac{5\sqrt{2}}{4}$的球S的表面上,并且满足∠BOC=90°,OA⊥平面BOC,AB=AC=$\sqrt{7}$,则三棱锥O-ABC的体积为$\frac{11\sqrt{6}}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)为定义在R上的奇函数,当x>0时,都有f(x+$\frac{3}{2}$)f(x)=2014,且当x∈(0,$\frac{3}{2}$]时,f(x)=log2(2x+1),则f(-2015)+f(2013)=log23.

查看答案和解析>>

同步练习册答案