精英家教网 > 高中数学 > 题目详情

【题目】已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).
(1)求实数a的取值范围以及直线l的方程;
(2)若圆C上存在动点N使CN=2MN成立,求实数a的取值范围.

【答案】
(1)解:圆C:(x+1)2+(y﹣2)2=5﹣a,C(﹣1,2),r= (a<5)

据题意:CM= a>3

因为CM⊥AB,kcmkAB=﹣1,kcm﹣1kAB=﹣1

所以直线l的方程为x﹣y+1=0


(2)解:由CN=2MN,得

依题意,圆C与圆 有公共点,

解得:﹣3 a≤

又因为由(1)知a<3,所以﹣3≤a<3


【解析】(1)利用两直线垂直,求出kAB=﹣1,从而求出直线方程;(2)首先求出圆的标准式方程,依题意两圆有公共点,所以圆心间距小于两圆半径之和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)对于任意x∈R有 ,且当x∈[﹣1,1]时,f(x)=x2+1,则以下命题正确的是: ①函数数y=f(x)是周期为2的偶函数;
②函数y=f(x)在[2,3]上单调递增;
③函数 的最大值是4;
④若关于x的方程[f(x)]2﹣f(x)﹣m=0有实根,则实数m的范围是[0,2];
⑤当x1 , x2∈[1,3]时,
其中真命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱柱ABC﹣A1B1C1中,若AB1⊥BC1 , 则下列关于直线A1C和AB1 , BC1的关系的判断正确的为(
A.A1C和AB1 , BC1都垂直
B.A1C和AB1垂直,和BC1不垂直
C.A1C和AB1 , BC1都不垂直
D.A1C和AB1不垂直,和BC1垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC﹣A1B1C1 , 底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M,N分别是A1B1、A1A的中点.

(1)求 的长;
(2)求cos( )的值;
(3)求证A1B⊥C1M.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,点M,N分别为线段A1B,AC1的中点.

(1)求证:MN∥平面BB1C1C;
(2)若D在边BC上,AD⊥DC1 , 求证:MN⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l的方程是x+my+2 =0,圆O的方程是x2+y2=r2(r>0).
(1)当m取一切实数时,直线l与圆O都有公共点,求r的取值范围;
(2)r=5时,求直线l被圆O截得的弦长的取值范围;
(3)当r=1时,设圆O与x轴相交于P,Q两点,M是圆O上异于P,Q的任意一点,直线PM交直线l′:x=3于点P′,直线QM交直线l′于点Q′.求证:以P′Q′为直径的圆C总经过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域是(0,+∞),对于任意正实数m,n恒有f(mn)=f(m)+f(n),且当x>1时,f(x)>0,f(2)=1.
(1)求 的值;
(2)求证:f(x)在(0,+∞)上是增函数;
(3)求方程4sinx=f(x)的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x2+2ex﹣x﹣ +m (x>0),若f(x)=0有两个相异实根,则实数m的取值范围是(
A.(﹣e2+2e,0)
B.(﹣e2+2e,+∞)
C.(0,e2﹣2e)
D.(﹣∞,﹣e2+2e)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是(

A.AC⊥SB
B.AB∥平面SCD
C.SA与平面SBD所成的角等于SC与平面SBD所成的角
D.AB与SC所成的角等于DC与SA所成的角

查看答案和解析>>

同步练习册答案