精英家教网 > 高中数学 > 题目详情
19.已知数列{an}满足an=3an-1+3n-1(n∈N*,n≥2),且a1=5,则an=${3^n}({n+\frac{1}{2}})+\frac{1}{2}$.

分析 把已知数列递推式两边同时除以3n,然后利用累加法求得答案.

解答 解:由an=3an-1+3n-1(n≥2),
得$\frac{{a}_{n}}{{3}^{n}}=\frac{{a}_{n-1}}{{3}^{n-1}}+1-\frac{1}{{3}^{n}}$(n≥2),
∴$\frac{{a}_{2}}{{3}^{2}}=\frac{{a}_{1}}{{3}^{1}}+1-\frac{1}{{3}^{2}}$,
$\frac{{a}_{3}}{{3}^{3}}=\frac{{a}_{2}}{{3}^{2}}+1-\frac{1}{{3}^{3}}$,
$\frac{{a}_{4}}{{3}^{4}}=\frac{{a}_{3}}{{3}^{3}}+1-\frac{1}{{3}^{4}}$,

$\frac{{a}_{n}}{{3}^{n}}=\frac{{a}_{n-1}}{{3}^{n-1}}+1-\frac{1}{{3}^{n}}$(n≥2),
累加得:$\frac{{a}_{n}}{{3}^{n}}=\frac{{a}_{1}}{3}+(n-1)-\frac{\frac{1}{9}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}$=$\frac{{a}_{1}}{3}+(n-1)-\frac{1}{6}+\frac{1}{2•{3}^{n}}$,
∵a1=5,
∴${a}_{n}={3}^{n}(n+\frac{1}{2})+\frac{1}{2}$(n≥2).
验证n=1时上式成立,
∴${a}_{n}={3}^{n}(n+\frac{1}{2})+\frac{1}{2}$.
故答案为:${3^n}({n+\frac{1}{2}})+\frac{1}{2}$.

点评 本题考查数列递推式,训练了累加法求数列的通项公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在复平面内,复数z=i(1+2i)的共轭复数(  )
A.2-iB.-2-iC.2+iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在R上的偶函数f(x)在[0,+∞)内单调递减,则下列判断正确的是(  )
A.f(2a)<f(-a)B.f(π)>f(-3)C.$f(-\frac{{\sqrt{3}}}{2})<f(\frac{4}{5})$D.f(a2+1)<f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.方程logax=x-2(0<a<1)的实数解的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,a1=2,Sn=$\frac{n+2}{3}{a}_{n}$(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列满足${b_n}={({-1})^n}•\frac{2n+1}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各式(各式均有意义)不正确的个数为(  )
①loga(MN)=logaM+logaN   
②loga(M-N)=$\frac{lo{g}_{a}M}{lo{g}_{a}N}$
③${a}^{{-}^{\frac{n}{m}}}=\frac{1}{\root{m}{{a}^{n}}}$ ④(amn=amn    ⑤loganb=-nlogab.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+$\frac{a-x}{x}$,其中a为常数,且a>0.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线y=$\frac{1}{2}$x+1垂直,求a的值;
(2)求函数f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在平行四边形ABCD中,下列结论中错误的是(  )
A.$\overrightarrow{AB}=\overrightarrow{DC}$B.$\overrightarrow{AD}+\overrightarrow{AB}=\overrightarrow{AC}$C.$\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{BD}$D.$\overrightarrow{AD}+\overrightarrow{CD}=\overrightarrow{BD}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)的导函数f′(x),满足xf′(x)+2f(x)=$\frac{1}{{x}^{2}}$,且f(1)=1,则函数f(x)的最大值为$\frac{e}{2}$.

查看答案和解析>>

同步练习册答案