精英家教网 > 高中数学 > 题目详情
已知全集U=R,A={x|x≤0},B={x|x≥2},则集合∁U(A∪B)=
 
考点:交、并、补集的混合运算
专题:函数的性质及应用
分析:本题可以先求根据集合A、B求出集合A∪B,再求出集合(A∪B),得到本题结论.
解答: 解:∵A={x|x≤0},B={x|x≥2},
∴A∪B={x|x≤0或x≥2},
∴∁U(A∪B)={x|0<x<2}.
故答案为:{x|0<x<2}.
点评:本题考查了集合的并集运算和集合的交集,本题难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,且Sn=2(an-1)(n∈N+).
(1)求数{an}的前n项和为Sn
(2)若bn=log2an+1(n≥1,n∈N),设Tn为数列{
1
(n+1)(bn-1)
}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<0},B={x|
1
2
2x<4}
,则A∩B等于(  )
A、{x|-1<x<2}
B、{x|-1<x<0}
C、{x|x<1}
D、{x|-2<x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(sinα+cosα)=sin2α,则f(
1
5
)
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x-1.
(1)求f(x)的函数解析式;
(2)作出函数f(x)的简图,写出函数f(x)的单调区间及最值;
(3)当x的方程f(x)=m有四个不同的解时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的公差为d,若数列{a1an}为递增数列,则(  )
A、d<0
B、d>0
C、a1d<0
D、a1d>0

查看答案和解析>>

科目:高中数学 来源: 题型:

若全集U=R,集合A={x|-3≤x≤1},A∪B={x|-3≤x≤2},则B∩∁UA=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若等差数列{an}的前5项和S5=25,且a4=3,则a7=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且有a1=2,3Sn=5an-an-1+3Sn-1(n≥2).
(1)求数列{an}的通项公式;
(2)若bn=(2n-1)an,求数列{bn}的前n项和Tn
(3)若
3
2
m2+m≤bn,对所有n∈N+都成立,求m的取值范围.

查看答案和解析>>

同步练习册答案