精英家教网 > 高中数学 > 题目详情

【题目】如图,已知抛物线的标准方程为,其中为坐标原点,抛物线的焦点坐标为为抛物线上任意一点(原点除外),直线过焦点交抛物线于点,直线过点交抛物线于点,连结并延长交抛物线于点.

1)若弦的长度为8,求的面积;

2)求的最小值.

【答案】1;(2.

【解析】

1)求出抛物线的方程.设直线的方程为为斜率的倒数),代入抛物线的方程,韦达定理、弦长公式求出,即可求出的面积;

2)设,则,可得.设直线的方程为,代入抛物线方程,可求得,可得.利用基本不等式可求的最小值.

1)因为焦点坐标为,所以

所以抛物线的方程为.

设直线的方程为为斜率的倒数).

,得,则有

所以

的面积为.

(另解:到直线的距离为,所以的面积为).

2)因为在抛物线上,可以设,根据第(1)问可知两点的纵坐标之积为定值为,所以,则有,其中

可得:

设直线的方程为

,得,所以可知两点的纵坐标之积为

所以,同理可得

综上可知:

所以有(等号成立条件

则有最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为(

A.B.C.D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:

土地使用面积(单位:亩)

1

2

3

4

5

管理时间(单位:月)

8

10

13

25

24

并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:

愿意参与管理

不愿意参与管理

男性村民

150

50

女性村民

50

1)求出相关系数的大小,并判断管理时间与土地使用面积是否线性相关?

2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?

3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为,求的分布列及数学期望。

参考公式:

其中。临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1772年德国的天文学家波得发现了求太阳的行星距离的法则,记地球距离太阳的平均距离为10,可以算得当时已知的六大行星距离太阳的平均距离如下表:

星名

水星

金星

地球

火星

木星

土星

与太阳的距离

4

7

10

16

52

100

除水星外,其余各星与太阳的距离都满足波得定则(某一数列规律),当时德国数学家高斯根据此定则推算,火星和木星之间距离太阳28还有一颗大行星,1801年,意大利天文学家皮亚齐经过观测,果然找到了火星和木星之间距离太阳28的谷神星以及它所在的小行星带,请你根据这个定则,估算从水星开始由近到远算,第10个行星与太阳的平均距离大约是(

A.388B.772C.1540D.3076

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)若二项式的展开式中存在常数项,则的最小值为______

2)从6名志愿者中选出4人,分别参加两项公益活动,每项活动至少1人,则不同安排方案的种数为____.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的半径为2为平面上一点,是圆上动点,线段的垂直平分线和直线相交于点

1)以中点为原点,所在直线为轴,建立平面直角坐标系,求点的轨迹方程;

2)设(1)中点轨迹与直线相交于两点,求三角形的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在棱长为4的正方体中,点M是正方体表面上一动点,则下列说法正确的个数为(

①若点M在平面ABCD内运动时总满足,则点M在平面ABCD内的轨迹是圆的一部分;

②在平面ABCD内作边长为1的小正方形EFGA,点M满足在平面ABCD内运动,且到平面的距离等于到点F的距离,则M在平面ABCD内的轨迹是抛物线的一部分;

③已知点N是棱CD的中点,若点M在平面ABCD内运动,且平面,则点M在平面内的轨迹是线段;

④已知点PQ分别是的中点,点M为正方体表面上一点,若MPCQ垂直,则点M所构成的轨迹的周长为.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,平面ABCD,四边形ABCD为菱形,,点MN分别在棱FDED.

1)若平面MAC,设,求的值;

2)若,平面AEN平面EDC所成的锐二面角为,求BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点分别为的中点,过点作平面使平面平面若直线平面,则的值为(

A.B.C.D.

查看答案和解析>>

同步练习册答案