精英家教网 > 高中数学 > 题目详情

【题目】直角坐标系xOy中,椭圆ab0)的短轴长为,离心率为.

1)求椭圆的方程;

2)斜率为1且经过椭圆的右焦点的直线交椭圆于P1P2两点,P是椭圆上任意一点,若λμR),证明:λ2+μ2为定值.

【答案】12)证明见解析

【解析】

1)利用已知条件解得,得到椭圆的方程.

2)直线P1P2的方程为yx2,由得,2x26x+30

P1x1y1)、P2x2y2)、Px0y0),结合韦达定理,以及向量关系,通过PP1P2都在椭圆上,转化求解即可.

1)依题意,

解得,椭圆的方程为

2)证明:,直线P1P2的方程为yx2

得,2x26x+30

P1x1y1)、P2x2y2)、Px0y0),则x1+x23

x0λx1+μx2y0λy1+μy2

因为PP1P2都在椭圆上,所以i012

6λ2+6μ2+3λμ1+2y1y2),

所以,6λ2+6μ26λ2+μ21是定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对有个元素的总体进行抽样,先将总体分成两个子总体是给定的正整数,且),再从每个子总体中各随机抽取2个元素组成样本.表示元素同时出现在样本中的概率.

1)求的表达式(用表示);

2)求所有的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,ac________.(补充条件)

1)求△ABC的面积;

2)求sinA+B.

从①b4,②cosB,③sinA这三个条件中任选一个,补充在上面问题中并作答.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),为曲线上的一动点.

(I)求动点对应的参数从变动到时,线段所扫过的图形面积;

(Ⅱ)若直线与曲线的另一个交点为,是否存在点,使得为线段的中点?若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020122日,国新办发布消息:新型冠状病毒来源于武汉一家海鲜市场非法销售的野生动.专家通过全基因组比对发现此病毒与2003年的非典冠状病毒以及此后的中东呼吸综合征冠状病毒,分别达到70%40%的序列相似性.这种新型冠状病毒对人们的健康生命带来了严重威胁因此,某生物疫苗研究所加紧对新型冠状病毒疫苗进行实验,并将某一型号疫苗用在动物小白鼠身上进行科研和临床实验,得到统计数据如下:

未感染病毒

感染病毒

总计

未注射疫苗

20

注射疫苗

30

总计

50

50

100

现从所有试验小白鼠中任取一只,取到“注射疫苗”小白鼠的概率为.

1)求列联表中的数据的值;

2)能否有99.9%把握认为注射此种疫苗对预防新型冠状病毒有效?

附:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足,当,则关于函数有如下四个结论:①为偶函数;②的图象关于直线对称;③方程有两个不等实根;④其中所有正确结论的编号是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,令,其中是函数的导函数.

(Ⅰ)时,求的极值;

(Ⅱ)时,若存在,使得恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过抛物线焦点的直线分别交抛物线和圆于点(自上而下)

1)求证:为定值;

2)若成等差数列,求直线的方程.

查看答案和解析>>

同步练习册答案