【题目】已知函数.
(1)若函数在区间内是单调递增函数,求实数a的取值范围;
(2)若函数有两个极值点,,且,求证:.(注:为自然对数的底数)
【答案】(1);(2)证明见解析
【解析】
(1)函数在区间上是单调递增函数,,化为:,.利用二次函数的单调性即可得出.
(2)在区间上有两个不相等的实数根,方程在区间上有两个不相等的实数根.令,利用根的分布可得的范围,再利用根与系数关系可得:,得,令.利用导数研究其单调性极值与最值即可得出.
(1)解:∵函数在区间上是单调递增函数,
∴,化为:,,
令,则时取等号.
.
∴实数的取值范围是;
(2)证明:在区间上有两个不相等的实数根,
即方程在区间上有两个不相等的实数根,
记,则,解得,
,
,
令,
,
记,
,
令在上单调递增.
,
因此函数存在唯一零点,使得,
当;当时,,
而在单调递减,在单调递增,
而,
,
,
∴函数在上单调递减,
,
可得:,
即.
科目:高中数学 来源: 题型:
【题目】《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每卦有三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】杨辉三角,是二项式系数在三角形中的一种几何排列.中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现了杨辉三角.在欧洲,帕斯卡在1654年也发现了这一规律,所以这个表又叫做帕斯卡三角形.杨辉三角是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合.
第0行 | 1 |
第1行 | 1 1 |
第2行 | 1 2 1 |
第3行 | 1 3 3 1 |
第4行 | 1 4 6 4 1 |
第5行 | 1 5 10 10 5 1 |
第6行 | 1 6 15 20 15 6 1 |
(1)记杨辉三角的前n行所有数之和为,求的通项公式;
(2)在杨辉三角中是否存在某一行,且该行中三个相邻的数之比为?若存在,试求出是第几行;若不存在,请说明理由;
(3)已知n,r为正整数,且.求证:任何四个相邻的组合数,,,不能构成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱中,,,为的中点.
(I)若为上的一点,且与直线垂直,求的值;
(Ⅱ)在(I)的条件下,设异面直线与所成的角为45°,求直线与平面成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)若,求函数在处的切线方程;
(2)若函数在和处有两个极值点,其中,.
(i)求实数的取值范围;
(ii)若(e为自然对数的底数),求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)如图,在多面体中,底面是边长为的的菱形, ,四边形是矩形,平面平面, , 和分别是和的中点.
(Ⅰ)求证:平面平面;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知实数a满足1<a≤2,设函数f (x)=x3-x2+ax.
(Ⅰ) 当a=2时,求f (x)的极小值;
(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,
求证:g(x)的极大值小于等于10.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com