精英家教网 > 高中数学 > 题目详情
16.直线kx-y+k=0与圆x2+y2-2x=0有公共点,则实数k的取值范围是(  )
A.$[-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}]$B.$(-∞,-\frac{{\sqrt{3}}}{3}]∪[\frac{{\sqrt{3}}}{3},+∞)$C.$[-\sqrt{3},\sqrt{3}]$D.$(-∞,-\sqrt{3}]∪[\sqrt{3},+∞)$

分析 由题意利用点到直线的距离小于等于半径,求出k的范围即可.

解答 解:由题意可知圆的圆心坐标为(1,0),半径为1,
因为直线kx-y+k=0与圆x2+y2-2x=0有公共点,所以$\frac{|2k|}{\sqrt{{k}^{2}+1}}$≤1,
解得-$\frac{\sqrt{3}}{3}$≤k≤$\frac{\sqrt{3}}{3}$.
故选:A.

点评 本题是中档题,考查直线与圆的位置关系,考查计算能力,转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.命题“若abc=0,则a,b,c中至少有一个为0”及其逆命题、否命题、逆否命题中,真命题有4个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}t+2}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以原点O为极点,x轴张半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=asinθ.
(Ⅰ)若a=2,求圆C的直角坐标方程与直线l的普通方程;
(Ⅱ)设直线l截圆C的弦长等于圆C的半径长的$\sqrt{2}$倍,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.式子$\frac{lo{g}_{8}27}{lo{g}_{2}3}$的值为(  )
A.1B.$\frac{3}{2}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若a>1,b>1,且lg(a+b)=lga+lgb,则$\frac{1}{a}+\frac{1}{b}$=1,lg(a-1)+lg(b-1)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆${C_1}:{x^2}+{y^2}=1$与圆${C_2}:(x-3{)^2}+(y-4{)^2}=25-m$(m<25)外切,则m=(  )
A.21B.19C.9D.-11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.幂函数f(x)的图象过点$({3,\root{3}{9}})$,则f(8)=(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在长方体ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3.
(1)求BD1与平面ABCD所成的角的余弦;
(2)求异面直线A1B与B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程是(  )
A.x+y-1=0B.2x-y+1=0C.x-2y+1=0D.x-y+1=0

查看答案和解析>>

同步练习册答案