精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+
a
x
+b
,其中a,b为实数.
(1)判断函数f(x)的奇偶性;
(2)若f(1)=4,且f(-1)=-2,求函数f(x)在(0,+∞)上的单调区间,并用定义加以证明;
(3)在(2)的条件下,求函数f(x)在[
1
2
,3]
上的最大值和最小值.
分析:(1)利用奇偶性的定义即可判断,注意考虑参数;
(2)由f(1)=4,且f(-1)=-2可求得a,b值,从而求得f(x),利用导数可求得其单调区间,然后用定义证明即可;
(3)由(2)可知f(x)在[
1
2
,3]
上的单调性,据单调性即可求得其最值;
解答:解:(1)f(x)的定义域为{x|x≠0}.
f(-x)+f(x)=(-x-
a
x
+b)+(x+
a
x
+b)=2b,
只有当b=0时f(x)为奇函数;
(2)由f(1)=4,f(-1)=-2,可得
1+a+b=4
-1-a+b=-2
,解得a=2,b=1.
则f(x)=x+
2
x
+1,f′(x)=1-
2
x2
,令f′(x)>0解得x>
2
,令f′(x)<0解得0<x<
2

所以f(x)的增区间是(
2
,+∞),减区间是(0,
2
);
2
<x1<x2,则f(x1)-f(x2)=(x1+
2
x1
+1
)-(x2+
2
x2
+1
)=(x1-x2)
(x1x2-2)
x1x2

因为
2
<x1<x2,所以x1-x2<0,x1x2-2>0,x1x2>0,
故f(x1)-f(x2)<0,即f(x1)<f(x2).
所以f(x)是(
2
,+∞)上的增函数;
设0<x1<x2
2
,则f(x1)-f(x2)=(x1+
2
x1
+1
)-(x2+
2
x2
+1
)=(x1-x2)
(x1x2-2)
x1x2

因为0<x1<x2
2
,所以x1-x2<0,x1x2-20,
故f(x1)-f(x2)>0,即f(x1)>f(x2).
所以f(x)是(0,
2
)上的增函数.
(3)由(2)知:f(x)在[
1
2
2
]上递减,在[
2
,3]上递增,
所以f(x)的最小值为f(
2
)=2
2
+1,
又f(
1
2
)=
11
2
,f(3)=
14
3

所以f(x)的最大值为f(
1
2
)=
11
2
点评:本题考查函数奇偶性、单调性及其应用,考查函数在闭区间上的最值,考查学生综合运用所学知识分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案