精英家教网 > 高中数学 > 题目详情
在三角形ABC中,∠A,∠B,∠C所对的边长分别为a,b,c,其外接圆的半径R=
5
6
36
,则(a2+b2+c2)(
1
sin2A
+
1
sin2B
+
1
sin2C
)
的最小值为
 
分析:先利用正弦定理用a,b和c以及R分别表示出sinA,sinB,sinC,进而把原式展开后利用基本不等式求得其最小值.
解答:解:由正弦定理可知
a
sinA
=
b
sinB
=
c
sinC
=2R
∴sinA=
a
2R
,sinB=
b
2R
,sinC=
c
2R

(a2+b2+c2)(
1
sin2A
+
1
sin2B
+
1
sin2C
)

=4R2(a2+b2+c2)(
1
a2
+
1
b2
 +
1
c2

=4R2(3+
a2
b2
+
b2
a2
+
a2
c2
+
c2
a2
+
c2
b2
+
b2
c2
)≥4R2(3+2+2+2)=
25
6
(当且仅当a=b=c时等号成立).
故答案为:
25
6
点评:本题主要考查了正弦定理的应用,基本不等式在最值问题中的应用.解题的关键是利用正弦定理把问题转化为边的问题,进行解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在三角形ABC中,A=120°,AB=5,BC=7,则
sinB
sinC
的值为(  )
A、
8
5
B、
5
8
C、
5
3
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,∠A,∠B,∠C的对边分别为a、b、c且b2+c2=bc+a2
(1)求∠A;
(2)若a=
3
,求b2+c2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,已知2
AB
AC
=|
AB
|•|
AC
|
,设∠CAB=α,
(1)求角α的值;
(2)若cos(β-α)=
4
3
7
,其中β∈(
π
3
6
)
,求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,AB、BC、CA的长分别为c、a、b且b=4,c=5,∠A=45°,则
AB
CA
=
-10
2
-10
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2
3
sinx+
sin2x
sinx

(I)求f(x)的最大值,及当取最大值时x的取值集合.
(II)在三角形ABC中a、b、c分别是角A、B、C所对的边,对定义域内任意x有f(x)≤f(A),且b=1,c=2,求a的值.

查看答案和解析>>

同步练习册答案