【题目】一个口袋中有4个白球,2个黑球,每次从袋中取出一个球.
(1)若有放回的取2次球,求第二次取出的是黑球的概率;
(2)若不放回的取2次球,求在第一次取出白球的条件下,第二次取出的是黑球的概率;
(3)若有放回的取3次球,求取出黑球次数的分布列及.
【答案】(1);(2);(3)答案见解析,1.
【解析】
(1)利用古典概型求得.
(2)问题相当于“从3个白球,2个黑球中取一次球,求取到黑球的概率”,进而求得.
(3)有放回的依次取出3个球,则取到黑球次数的可能取值为.
三次取球互不影响,由(1)知每次取出黑球的概率均为,利用二项分布求得的分布列,并利用公示求得.
解:设“第次取到白球”, “第次取到黑球”
(1)每次均从6个球中取球,每次取球的结果互不影响,所以.
(2)问题相当于“从3个白球,2个黑球中取一次球,求取到黑球的概率”,
所以,所求概率.
(3)有放回的依次取出3个球,则取到黑球次数的可能取值为.
三次取球互不影响,由(1)知每次取出黑球的概率均为,
所以,; ;
; .
这个试验为3次独立重复事件,服从二项分布,即,.
科目:高中数学 来源: 题型:
【题目】已知圆,圆,如图,分别交轴正半轴于点.射线分别交于点,动点满足直线与轴垂直,直线与轴垂直.
(1)求动点的轨迹的方程;
(2)过点作直线交曲线与点,射线与点,且交曲线于点.问:的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查,若从抽取的6所学校中随机抽取2所学校做进一步数据分析.
(1)求应从小学、中学、大学中分别抽取的学校数目;
(2)求抽取的6所学校中的2所学校均为小学的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),为曲线上一动点,动点满足.
(1)求点轨迹的直角坐标方程;
(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,是上一个动点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度,某地区在2015年以前的年均脱贫率(脱贫的户数占当年贫困户总数的比)为70%,2015年开始全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加户数占2019年贫困总户数的比)及该项目的脱贫率见下表:
实施项目 | 种植业 | 养殖业 | 工厂就业 |
参加占户比 | 45% | 45% | 10% |
脱贫率 | 96% | 96% | 90% |
那么2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( )倍.
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的离心率为,的面积为2.
(I)求椭圆C的方程;
(II)设M是椭圆C上一点,且不与顶点重合,若直线与直线交于点P,直线与直线交于点Q.求证:△BPQ为等腰三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣1|+|2x+2|,g(x)=|x+2|﹣|x﹣2a|+a.
(1)求不等式f(x)>4的解集;
(2)对x1∈R,x2∈R,使得f(x1)≥g(x2)成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场为迎接“618年中庆典,拟推出促销活动,活动规则如下:①活动期间凡在商场内购物,每满673元可参与一次现金红包抽奖,且互不影响,详细如下表:
奖项 | 一等奖 | 二等奖 |
奖金 | 200元现金红包 | 优惠餐券1张(价值50元) |
获奖率 | 30% | 70% |
②活动期间凡在商场内购物,每满2019元可参与消费返现,返现金额为实际消费金额的15%.规定每位顾客只可选择参加其中一种优惠活动.
(1)现有顾客甲在商场消费2019元,若其选择参与抽奖,求其可以获得现金红包的概率.
(2)现有100名消费金额为2019元的顾客正在等待抽奖,假如你是该商场的活动策划人,你更希望顾客参与哪项优惠活动?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com