精英家教网 > 高中数学 > 题目详情

【题目】一个口袋中有4个白球,2个黑球,每次从袋中取出一个球.

1)若有放回的取2次球,求第二次取出的是黑球的概率;

2)若不放回的取2次球,求在第一次取出白球的条件下,第二次取出的是黑球的概率;

3)若有放回的取3次球,求取出黑球次数的分布列及.

【答案】1;(2;(3)答案见解析,1.

【解析】

1)利用古典概型求得.

2)问题相当于3个白球,2个黑球中取一次球,求取到黑球的概率,进而求得.

3)有放回的依次取出3个球,则取到黑球次数的可能取值为.

三次取球互不影响,由(1)知每次取出黑球的概率均为,利用二项分布求得的分布列,并利用公示求得.

解:设次取到白球 次取到黑球

1)每次均从6个球中取球,每次取球的结果互不影响,所以.

2)问题相当于3个白球,2个黑球中取一次球,求取到黑球的概率

所以,所求概率.

3)有放回的依次取出3个球,则取到黑球次数的可能取值为.

三次取球互不影响,由(1)知每次取出黑球的概率均为

所以,

.

这个试验为3次独立重复事件,服从二项分布,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,圆,如图,分别交轴正半轴于点.射线分别交于点,动点满足直线轴垂直,直线轴垂直.

1)求动点的轨迹的方程;

2)过点作直线交曲线与点,射线与点,且交曲线于点.问:的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查,若从抽取的6所学校中随机抽取2所学校做进一步数据分析.

1)求应从小学、中学、大学中分别抽取的学校数目;

2)求抽取的6所学校中的2所学校均为小学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为其左焦点,在椭圆.

1)求椭圆的方程;

2)若是椭圆上不同的两点,以为直径的圆过原点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),为曲线上一动点,动点满足.

1)求点轨迹的直角坐标方程;

2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为上一个动点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实现国民经济新三步走的发展战略目标,国家加大了扶贫攻坚的力度,某地区在2015年以前的年均脱贫率(脱贫的户数占当年贫困户总数的比)为70%,2015年开始全面实施精准扶贫政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加户数占2019年贫困总户数的比)及该项目的脱贫率见下表:

实施项目

种植业

养殖业

工厂就业

参加占户比

45

45

10

脱贫率

96

96

90

那么2019年的年脱贫率是实施精准扶贫政策前的年均脱贫率的( )倍.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为的面积为2.

(I)求椭圆C的方程;

(II)M是椭圆C上一点,且不与顶点重合,若直线与直线交于点P,直线与直线交于点Q.求证:BPQ为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|x1|+|2x+2|gx)=|x+2||x2a|+a.

1)求不等式fx)>4的解集;

2)对x1Rx2R,使得fx1)≥gx2)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为迎接“618年中庆典,拟推出促销活动,活动规则如下:①活动期间凡在商场内购物,每满673元可参与一次现金红包抽奖,且互不影响,详细如下表:

奖项

一等奖

二等奖

奖金

200元现金红包

优惠餐券1张(价值50元)

获奖率

30%

70%

②活动期间凡在商场内购物,每满2019元可参与消费返现,返现金额为实际消费金额的15%.规定每位顾客只可选择参加其中一种优惠活动.

1)现有顾客甲在商场消费2019元,若其选择参与抽奖,求其可以获得现金红包的概率.

2)现有100名消费金额为2019元的顾客正在等待抽奖,假如你是该商场的活动策划人,你更希望顾客参与哪项优惠活动?

查看答案和解析>>

同步练习册答案