精英家教网 > 高中数学 > 题目详情
5.已知sin20°=a,则sin50°等于(  )
A.1-2a2B.1+2a2C.1-a2D.a2-1

分析 利用诱导公式及二倍角的余弦函数公式化简所求即可得解.

解答 解:∵sin20°=a,
∴sin50°=cos40°=1-2sin220°=1-2a2
故选:A.

点评 本题主要考查了诱导公式及二倍角的余弦函数公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知f(x)=$\frac{1+2lnx}{{x}^{2}}$.
(1)求f(x)的单调区间;
(2)令g(x)=ax2-2lnx,则g(x)=1时有两个不同的根,求a的取值范围;
(3)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)-f(x2)|≥k|lnx1-lnx2|成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}为等比数列,其前n项和为Sn,且S1,S2的等差中项为S3,若8(a1+a3)=-5.
(1)求数列[an]的通项公式;
(2)记Rn=|$\frac{1}{a_1}|+|\frac{2}{a_2}|+|\frac{3}{a_3}|+…+|\frac{n}{a_n}$|,对于任意的n≥2,n∈N*,不等式m(Rn-n-1)≥(n-1)2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:
(1)(-2015)0+($\frac{3}{2}$)-2•$\root{3}{(3\frac{3}{8})^{2}}$-$\frac{1}{\sqrt{0.01}}$+$\sqrt{{9}^{3}}$;
(2)2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=1+lnx-$\frac{k(x-2)}{x}$(k∈R),g(x)=x+$\frac{8}{x}$.
(1)若函数f(x)有极值,求实数k的取值范围:
(2)若当x>2时,f(x)>0恒成立,求证:当实数k取最大整数且x>2时,g(x)>f(x)+3.(参考数据ln8=2.08,ln9=2.20,ln10=2.30)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线C过点$(3,\sqrt{2})$,且与双曲线$\frac{x^2}{6}-\frac{y^2}{2}=1$有共同的渐近线,则双曲线C的标准方程为$\frac{x^2}{3}-{y^2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设a,b∈R,集合{a,1}={0,a+b},则a-b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某商场2014年一月份到十二月份销售额呈现先下降后上升的趋势,下列函数模型中能较准确反映该商场月销售额f(x)与月份x关系的是(  )
A.f(x)=a•bn(b>0,且b≠1)B.f(x)=lognx+b(a>0,且a≠1)
C.f(x)=x2+ax+bD.f(x)=$\frac{a}{x}+b$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,四棱锥P-ABCD中,PA⊥平面ABCD,ABCD为正方形,则该四棱锥中互相垂直的平面有6组.

查看答案和解析>>

同步练习册答案