精英家教网 > 高中数学 > 题目详情
给出下列4个命题:

①“0<x<5”是“不等式|x-2|<3”成立的充分不必要条件;

②直线l1:y=2x-5到直线l2:y=x+5的角是;

③在曲线y=4x-x2上取两点A(4,0)、B(2,4),若曲线上一点P处的切线恰好平行于弦AB,则点P的坐标为(3,3);

④把4本不同的书分成三堆,共有6种不同分法.

其中错误的命题有_____________.(把你认为错误命题的序号都填上)

解析:由|x-2|<3,得-3<x-2<3,-1<x<5,

①正确;=2,=,

·=-1,∴l1⊥l2,②不正确;

kAB==-2,y′=4-2x=-2,得x=3,代入y=4x-x2得y=3,即过(3,3)点切线与AB平行,③正确;

四本不同的书分成三堆,共有==6种不同的分法,④正确.故错误的命题为②.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、已知函数f(x)=x3+bx2+cx+d(b,c,d为常数),当k∈(-∞,0)∪(4,+∞)时,f(x)-k=0只有一个实根;当k∈(0,4)时,f(x)-k=0只有3个相异实根,现给出下列4个命题:
①f(x)=4和f′(x)=0有一个相同的实根;
②f(x)=0和f′(x)=0有一个相同的实根;
③f(x)+3=0的任一实根大于f(x)-1=0的任一实根;
④f(x)+5=0的任一实根小于f(x)-2=0的任一实根.
其中正确命题的序号是
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列4个命题:
①函数f(x)=x|x|+ax+m是奇函数的充要条件是m=0:
②若函数f(x)=log(ax+1)的定义域是{x|x<l},则a<-1;
③若loga2<logb2,则
lim
n→∞
an-bn
an+bn
=1(其中n∈N+);
④圆:x2+y2-10x+4y-5=0上任意点M关于直线ax-y-5a=2的对称点,M′也在该圆上填上所有正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

16、给出下列4个命题:
①若一个函数的图象与其反函数的图象有交点,则交点一定在直线y=x上;
②函数y=f(1-x)的图象与函数y=f(1+x)的图象关于直线x=1对称;
③若奇函数y=f(x)的图象关于直线x=a对称,则y=f(x)的周期为2a;
④已知集合A={1,2,3},B={4,5},则以A为定义域,以B为值域的函数有8个.
在上述四个命题中,所有不正确命题的序号是
①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知函数方程f(x)=x3+bx2+cx+d(b,c,d为常数),当k∈(-∞,0)∪(4,+∞)时,方程f(x)-k=0有且仅有一个实根,当k∈(0,4)时,方程f(x)-k=0有3个相异实根.给出下列4个命题:
①方程f(x)=4和f'(x)=0有且仅有一个相同的实根;
②方程f(x)=0和f'(x)=0有且仅有一个相同的实根;
③方程f(x)+3=0的任一实根都大于f(x)-1=0的任一实根;
④方程f(x)+5=0的任一实根都小于f(x)-2=0的任一实根.
其中正确命题的序号是
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列4个命题:
①函数f(x)=x|x|+ax+m是奇函数的充要条件是m=0;
②若函数f(x)=lg(ax+1)的定义域是{x|x<1},则a<-1;
③函数f(x)=e-xx2的极小值为f(0),极大值为f(2);
④圆:x2+y2-10x+4y-5=0上任意点M关于直线ax-y-5a=2的对称点M'也在该圆上.
所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案