精英家教网 > 高中数学 > 题目详情

【题目】某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下2×2的列联表:

喜欢该项运动

不喜欢该项运动

总计

40

20

60

20

30

50

总计

60

50

110

由公式,算得

附表:

0.025

0.01

0.005

5.024

6.635

7.879

参照附表,以下结论正确是( )

A. 以上的把握认为“爱好该项运动与性别有关”

B. 以上的把握认为“爱好该项运动与性别无关”

C. 以上的把握认为“爱好该项运动与性别有关”

D. 以上的把握认为“爱好该项运动与性别无关”

【答案】C

【解析】由题意知本题所给的观测值,∴这个结论有0.010的机会出错,
即有99%以上的把握认为“爱好体育运动与性别有关”,故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4 坐标系与参数方程

在直角坐标系中,圆,曲线的参数方程为为参数),并以为极点, 轴正半轴为极轴建立极坐标系.

(1)写出的极坐标方程,并将化为普通方程;

(2)若直线的极坐标方程为相交于两点,

的面积(为圆的圆心).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率.以两个焦点和短轴的两个端点为顶点的四边形的周长为8,面积为

(Ⅰ)求椭圆的方程;

(Ⅱ)若点为椭圆上一点,直线的方程为,求证:直线与椭圆有且只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线)与轴交于点,动圆与直线相切,并且与圆相外切,

1)求动圆的圆心的轨迹的方程;

2)若过原点且倾斜角为的直线与曲线交于两点,问是否存在以为直径的圆经过点?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,向量,函数.

(1)求的单调减区间;

(2)将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到的图象,求函数的解析式及其图象的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蛋糕店每天做若干个生日蛋糕,每个制作成本为50元,当天以每个100元售出,若当天白天售不出,则当晚以30元/个价格作普通蛋糕低价售出,可以全部售完.

(1)若蛋糕店每天做20个生日蛋糕,求当天的利润(单位:元)关于当天生日蛋糕的需求量(单位:个, )的函数关系;

(2)蛋糕店记录了100天生日蛋糕的日需求量(单位:个)整理得下表:

(ⅰ)假设蛋糕店在这100天内每天制作20个生日蛋糕,求这100天的日利润(单位:元)的平均数;

(ⅱ)若蛋糕店一天制作20个生日蛋糕,以100天记录的各需求量的频率作为概率,求当天利润不少于900元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣[x],其中[x]表示不超过实数x的最大整数.若关于x的方程f(x)=kx+k有三个不同的实根,则实数k的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线上,且与另一条直线相切于点.

(1)求圆的标准方程;

(2)已知在圆上运动,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱 中, , , 是棱上的动点.

证明:

若平面分该棱柱为体积相等的两个部分,试确定点的位置,并求二面角的大小.

查看答案和解析>>

同步练习册答案