分析 (1)直接利用正弦定理以及二倍角公式,求出cosA的值;
(2)由题意可得A,B为锐角,由倍角公式,同角三角函数关系式可求sinB,cosB,然后利用两角和与差的余弦函数公式求出cosC的值即可.
解答 解:(1)∵在△ABC中,∠B=2∠A,a:b=5:8.
∴由正弦定理得:8sinA=5sinB=5sin2A=10sinAcosA,
∴cosA=$\frac{4}{5}$,
(2)∵A为三角形内角,
∴A∈(0,$\frac{π}{4}$),B<$\frac{π}{2}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{3}{5}$,
∴sinB=sin2A=2×$\frac{3}{5}×\frac{4}{5}$=$\frac{24}{25}$,cosB=1-2sin2A=$\frac{7}{25}$,
则cosC=cos[π-(A+B)]=sinAsinB-cosAcosB=$\frac{3}{5}×\frac{24}{25}-\frac{4}{5}×\frac{7}{25}$=$\frac{44}{125}$.
点评 此题考查了正弦定理,同角三角函数间的基本关系,二倍角的正弦函数公式,熟练掌握正弦定理是解本题的关键,属于基本知识的考查.
科目:高中数学 来源: 题型:选择题
A. | f($\frac{3}{2}$)>f(a2+a+2) | B. | f($\frac{3}{2}$)<f(a2+a+2) | ||
C. | f($\frac{3}{2}$)=f(a2+a+2) | D. | 与a有关,不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 递增且有最大值为f(-a) | B. | 递减且有最小值为f(-a) | ||
C. | 递增且有最大值为f(-b) | D. | 递减且有最大值为f(-a) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com