精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}的前n项和为Sn , S3=﹣15,且a1+1,a2+1,a4+1成等比数列,公比不为1.
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

【答案】
(1)解:设等差数列{an}的公差为d,

∵a1+1,a2+1,a4+1成等比数列,∴ =(a1+1)(a4+1),

又S3=﹣15,∴ =﹣15,∴a2=﹣5.

∴(﹣5+1)2=(﹣5﹣d+1)(﹣5+2d+1),解得d=0或d=﹣2.

d=0时,公比为1,舍去.

∴d=﹣2.

∴an=a2﹣2(n﹣2)=﹣5﹣2(n﹣2)=﹣2n﹣1


(2)解:由(1)可得:Sn= =﹣n2﹣2n.

∴bn= =﹣ =﹣

∴数列{bn}的前n项和Tn= + + +…+ +

=﹣

=﹣ +


【解析】(1)设等差数列{an}的公差为d,根据a1+1,a2+1,a4+1成等比数列,可得 =(a1+1)(a4+1),又S3=﹣15,可得 =3a2=﹣15,解得a2 , 进而得到d.即可得出an . (2)由(1)可得:Sn=﹣n2﹣2n.可得bn= =﹣ =﹣ ,利用“裂项求和”即可得出.
【考点精析】通过灵活运用数列的前n项和,掌握数列{an}的前n项和sn与通项an的关系即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)为定义在R上的奇函数,且当x≥0时,f(x)=x2﹣(a+4)x+a.
(1)求实数a的值及f(x)的解析式;
(2)求使得f(x)=x+6成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: + =1(a>b>0)的离心率为 ,其左焦点到点P(2,1)的距离为 . (Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC= ,D,E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE(A′平面ABC)是△ADE绕DE旋转过程中的一个图形,有下列命题: ①平面A′FG⊥平面ABC;
②BC∥平面A′DE;
③三棱锥A′﹣DEF的体积最大值为 a3
④动点A′在平面ABC上的射影在线段AF上;
⑤二面角A′﹣DE﹣F大小的范围是[0, ].
其中正确的命题是(写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了促进学生的全面发展,郑州市某中学重视学生社团文化建设,现用分层抽样的方法从“话剧社”,“创客社”,“演讲社”三个金牌社团中抽取6人组成社团管理小组,有关数据见表(单位:人):

社团名称

成员人数

抽取人数

话剧社

50

a

创客社

150

b

演讲社

100

c


(1)求a,b,c的值;
(2)若从“话剧社”,“创客社”,“演讲社”已抽取的6人中任意抽取2人担任管理小组组长,求这2人来自不同社团的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)的定义域为(﹣a,0)∪(0,a)(0<a<1),其图象上任意一点P(x,y)满足x2+y2=1,则给出以下四个命题:①函数y=f(x)一定是偶函数;②函数y=f(x)可能是奇函数;③函数y=f(x)在(0,a)上单调递增④若函数y=f(x)是偶函数,则其值域为(a2 , 1)其中正确的命题个数为(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在x轴上,离心率为 ,且经过点M(4,1),直线l:y=x+m交椭圆于不同的两点A,B. (Ⅰ)求椭圆的方程;
(Ⅱ)求m的取值范围;
(Ⅲ)若直线l不过点M,求证:直线MA、MB与x轴围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1 . (Ⅰ)求数列{bn}的通项公式;
(Ⅱ)令cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案